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Recently, Bogart showed that a certain class of distribu-
tive Noether lattices, namely regular local ones, are embed-
dable in the lattice of ideals of an appropriate Noetherian
ring. In this paper a characterization of the distributive
Noether lattices which are representable as the complete lattice
of ideals of a Noetherian ring is obtained.

We observe that if L(R) is the lattice of ideals of a ring R (com-
mutative with 1) and if A, B and C are elements of L(R) with A ^ B
and A ^ C, then there exists a principal element E e L(R) with E ^
A, E ^ B and E ^ C. If a Noether lattice L has this property, then
we will say that L satisfies the weak union condition. (The term
union condition has been used elsewhere for a stronger property.)
With this definition, then, the main result of this paper is that a dis-
tributive Noether lattice L is representable as the lattice of ideals of
a Noetherian ring if, and only if, L satisfies the weak union condition.

We adopt the terminology of [2] and we assume throughout that
L is a Noether lattice.

LEMMA 0. // L is local, and if the maximal element PeL is
principal, then every element A Φ 0 of L is a power Pn(0 rg n) of P.

Proof. If A Φ 0, then by the Intersection Theorem [2] there ex-
ists a largest integer n such that A g Pn. Then

A = A Λ Pn = (A: Pn)Pn ,

so since A S Pn+\ it follows that A: Pn = I, and therefore that A = Pn.

LEMMA 1. Assume L is distributive and satisfies the weak union
condition. If L is local and if the maximal element of L is prin-
cipal, or if 0 is prime and every element A Φ 0 has a primary de-
composition involving only powers of maximal primes, then L is
representable as the lattice of ideals of a Noetherian ring.

Proof. Assume L is local with maximal element P, and that P
is principal. Let (R, M) be a regular local ring of altitude one. If
0 is prime in L, then the powers of P are distinct, and L is isomor-
phic to the lattice of ideals of R. If 0 is not prime in L, and if k
is the least positive integer such that Pk = Pk+1, then L is isomorphic
to the lattice of ideals of R | Mk.
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Now, assume that 0 is prime and that every element A Φ 0 has
a primary decomposition Pi1 Π Π Pξk, where each P^ is maximal.
Then every prime P Φ 0 is maximal, so the Pi in any decomposition
A = Pi1 Π * Π Plk are just the minimal primes over A. Since 0 is
prime in L, it follows that distinct powers of maximal primes are dis-
tinct. Then by the comaximality of distinct primes, it follows that
every element A Φ 0 has a factorization as a product of primes [2],
and since the primes involved are maximal, the factorizations are
unique.

Now, let a be the cardinality of the collection & of maximal
primes in L, and let K be a field of cardinality β ^ a. Let A be a
subset of K of cardinality a, and let S be the complement in K[x]
of the union of the prime ideals (a + x), ae A. Then S is a multi-
plicatively closed subset of K[x] which doesn't meet any of the prime
ideals (a + x), and which meets every other prime ideal. Hence K[x]s

is a Dedekind Domain with a maximal primes [3].
We let φ be a one-one correspondence between the maximal primes

of L and the maximal primes of K[x]s, and extend φ to a map of L
onto the lattice of ideals of K[x]s by taking 0 to 0 and products to
products. Then since L is distributive and distinct nonzero primes
are comaximal, we have

( i )

(ϋ) (ό Pή Λ (π Pί) = (λ Pή Λ (A Pi
_ J^ p.m&x (ei.fi) _ J J p.nmzle;

1 1

(iii) (π Pή v (π P/') = (A Pή v (A P
n n

— λ p . m i n ( e i > / ΐ ) _ T T p τniτi {eiyf{)

1 1

for distinct primes P* and for ei9 /< ̂ > 0.
Since the lattice of ideals of a Dedekind domain also has these

properties [3], it follows that φ is an isomorphism of L onto the lat-
tice of ideals of K[x]s.

To reduce the general case to the cases covered by Lemma 1, we
require the following lemmas.

LEMMA 2. If L is distributive and satisfies the weak union con-
dition, and if D e L, then L \ D and LD are distributive and satisfy
the weak union condition.

Proof. The proof is immediate for L \ D, as is the distributivity
of LD. If {A}, {B} and {C} are elements of LD with {A} S {#} and
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{A} S {C}, then AD ^ BD and AD % CD. So there exists a principal
element EeL with E ^ AD, E ^ BD and E S CD. Then {E} is prin-
cipal with {E} ̂  {A}, {#} ̂  {5} and {E} S {C}.

LEMMA 3. // L is a distributive local Noether lattice which
satisfies the weak union condition, then the maximal element P of
L is principal.

Proof. Let A19 , Ak be a minimal collection of principal elements
with join P. If k > 1, then P < A, V V A-i and P ^ A , so there
exists a principal element A ^ P with A ̂  A V Ak_x and A ^ Ak.
Then

A - 4 Λ P = A Λ [(A V V A-i) V A ]

= ((Λ V V A-i) Λ A) V (A, Λ A)

= ((A, V V Λ-i): A V (Aκ: A))A .

Since A Φ 0, it follows from the Intersection Theorem [2] that

(A, V V Λ-i): ^ V Ak; A = I,

which is a contradiction since L is local. Hence k = 1.

We are now ready to prove the following

THEOREM 4. If L is a distributive Noether lattice, then L is
representable as the lattice of ideals of a Noetherian ring if and
only if, L satisfies the weak union condition.

Proof. Since the lattice of ideals of any ring satisfies the weak
union condition, the "only if" is clear. Hence, assume L is a distribu-
tive Noether lattice which satisfies the weak union condition. Let

o = Qx n n Q. n n Q*

be a normal decomposition of 0 in which Qι is PΓprimary. We assume
that P1? , P s are nonmaximal elements of L and that P s + i, , Pk

are maximal.
By Lemmas 2 and 3 and the Principal Ideal Theorem [2], if P is any

prime in L, then P has height no greater than one, so every prime is
either maximal or minimal. Further, if P ' < P are primes, then by
Lemma 0, 0 is prime in LP, so OP = Pr = ΛΓ Pn. It follows from this
that 0 has no embedded primes, that the primaries Qif 1 ̂  i ^ s, are
the Piy and that no prime P contains two distinct minimal primes.
Further, since every element, except possibly 0, of LP is a power of
the maximal element, we have that the P-primary elements of the
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maximal primes P are precisely the powers Pn of P.
Then for each ί, s + 1 ^ i ^ A;, there exists a positive integer ^

with Qi = Pi\ Hence 0 = Px fl Π P s Π P/ t1 D Π PΛ

β* Then since
the P, are pairwise comaximal we have

L^L\P1® --®L\Pa®L\ P ί1 © . . . © L | p * ,

where each summand is of the type considered in Lemma 1.
Since the lattice of ideals of a direct sum EL φ © Rn of rings

is isomorphic to the direct sum of the lattices of ideals of the rings,
the result now follows.

It is easily seen from the decomposition

in the proof of Theorem 4 that every element of L is a product of
primes and that the maximal elements of L are meet principal (in fact
that every element is principal). Also, it is seen that the decomposi-
tion above characterizes the distributive Noether lattices which are
representable as the lattice of ideals of a Noetherian ring. These ob-
servations lead to the following theorem which is stated without proof
since the proof is similar to that of Theorem 4.

THEOREM 5. The following are equivalent for a Noether lattice L:
( i ) L is distributive and representable as the lattice of ideals

of a Noetherian ring
(ii) L is distributive and satisfies the weak union condition
(iii) For every maximal element P, LP is linear
(iv) Every element A of L different from I is a product of

primes
(v) Every maximal element P of L satisfies the condition A A

P = (A: P)P, for all A in L
(vi) L is the direct sum L = Lt 0 © Ln of Noether lattices

L{, where for each ί, either L{ is local with a principal maximal
element, or 0 is prime in Li and every element A Φ I is a (unique)
product of primes.
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