
Pacific Journal of
Mathematics

GAMES WITH UNIQUE SOLUTIONS THAT ARE NONCONVEX

WILLIAM FRANKLIN LUCAS

Vol. 28, No. 3 May 1969



PACIFIC JOURNAL OF MATHEMATICS
Vol. 28, No. 3, 1969

GAMES WITH UNIQUE SOLUTIONS
THAT ARE NONCONVEX

W. F. LUCAS

In 1944 von Neumann and Morgenstern introduced a
theory of solutions (stable sets) for ^-person games in charac-
teristic function form. This paper describes an eight-person
game in their model which has a unique solution that is
nonconvex. Former results in solution theory had not indi-
cated that the set of all solutions for a game should be of
this nature.

First, the essential definitions for an ^-person game will be stated.
Then, a particular eight-person game is described. Finally, there is a
brief discussion on how to construct additional games with unique
and nonconvex solutions.

The author [2] has subsequently used some variations of the
techniques described in this paper to find a ten-person game which
has no solution; thus providing a counterexample to the conjecture
that every ^-person game has a solution in the sense of von Neumann
and Morgenstern.

2* Definitions* An n-person game is a pair (N, v) where N =
{1, 2, , n) and v is a real valued characteristic function on 2N, that
is, v assigns the real number v(S) to each subset S of N and v{φ) = 0.
The set of all imputations is

A = \x: Σ Xi = v(N) and x, ̂  v({i}) for all

where x — (xl9 x2, , xn) is a vector with real components. If x and
y are in A and S is a nonempty subset of N, then x dom5 y means
Σiies%i^v(S) and ^ > yt for all ieS. For BczA let Dom^ B =
{y G A: there exists xeB such that x dom^ y) and let Dom B =
Usc v Doπis B. A subset if of A is a solution if K Π Dom K = φ and
K U Dom K = A. The core of a game is

C = \x e A: Σ ^ S v(S) for all S c N\ .

The core consists of those imputations which are maximal with respect
to all of the relations dom5, and hence it is contained in every solution.

3. Example. Consider the game (N, v) where N = {1, 2, 3, 4, 5,
6, 7, 8} and where v is given by: v(N) = 4, v({l, 4, 6, 7}) - 2, <y({l, 2}) =
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v({3,4}) = v({5, 6}) - v({7, 8}) - 1, and v(S) = 0 for all other SczN. For
this game

and

A = \x: Σ ff. = 4 and a?, ̂  0 for all i e N\
I ieN J

{ x e A: xt + x2 = x3 + x4 = xδ + xd = x7 + x8 =

and xx + x4 + x6 + xr ^ 2} .

(0,1,1, 0, 0,1,1, 0)
(0,1,1, 0,1, 0,1, 0)

Xl = 1, #3 = 0

(1, 0,1, 0, 0,1,1, 0)
(1, 0,1, 0,1, 0,1, 0)

= 1/2, as = 1/2

(0,1,1, 0, 0,1, 0,1)
(0,1,1, 0,1, 0, 0,1)

Xi — 0, xs = 1

(1,0,1,0,0,1,0,1)
(1, 0,1, 0,1, 0, 0,1)

(0,1, 0,1, 0,1,1, 0}
(0,1, 0,1,1, 0,1, 0)

(1,0,0,1,0,1,1,0)
(l, o, o, l, l, o, i,;o)

o L
C

(0,1, 0,1, 0,1, 0,1)
(o,i, o, l, l, o, o, l)

(1,0,0,1,0,1,0,1)
1, 0, 0,1,1, 0, 0,1)

FIG. 1. Traces in H of L, C and K-C
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Also define the four-dimensional hypercube

H = {x e A: xλ + x2 = x3 + #4 = xδ + #6 = %Ί + #8 = 1}

Three traces of iJ as well as its 16 vertices are pictured in Fig. 1.
The unique solution for this game is

K = C U Fx U F4 U F6 U F7

where the cube Ft is the face of H given by

Fi = Hn {x: Xi = 1} ΐ = 1, 4, 6, 7 .

Each ^ - C is a tetrahedron with one face meeting C. In the three
traces of H illustrated in Fig. 1, the traces of C are shown in heavy
solid lines and the traces of the Fι — C are shown in heavy broken
lines.

The proof that K is the unique solution follows readily from two
observations. First, K is just those imputations in H which are
maximal in H with respect to the relation dom{1)4>6,7}. Second, the
closed line segment L joining the imputations (0,1, 0,1, 0,1, 0,1) and
<1, 0,1, 0,1, 0,1, 0) has the properties LczC and \JS Dom5 L = A - H
when S = {1, 2}, {3, 4}, {5, 6}, and {7, 8}.

To see that K is nonconvex, note the lower trace

F8 = Hn{x:x8 = 1}

in Fig. 1. The heavy lines (solid and broken) in this trace show
K n F8, which is clearly not convex. For example, the imputation

i (1, 2, 2, 1, 2, 1, 0, 3) = * (0, 1, 1, 0, 0, 1, 0, 1)

+ i (0, 1, 0,1,1, 0, 0,1) + i (1, 0,1, 0,1, 0, 0,1)

is a linear combination of points in K, but it is not itself in K.

4* Remarks* The original von Neumann-Morgenstern theory [3]
assumed that the characteristic function of a game is superadditive,
that is, vζSi U S2) ^ viSJ + v(S2) whenever S± and S2czN and
Si Π S2 — φ. Using the method of Gillies [1, p. 68] this example can
be made into a game with a superadditive characteristic function
without changing A, C, or the unique solution K.

The essential idea in the example above is that (Js Dom^L = A — H
where S = {1, 2}, {3, 4}, {5, 6}, and {7, 8}. One can generalize this rela-
tion in various ways to obtain many games in other dimensions which
have a similar property. He can then introduce into these games
additional SaN with v(S) > 0, but in such a way as to maintain
the corresponding L a s a subset of the core. As a result he will
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obtain large classes of interesting solutions, many of which are unique
and nonconvex.
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