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We shall say that the series of real numbers, >, 1/a;,
is a generalized geometric series (g.g.s.) if and only if
@ < a;410i-, for all ¢ = 1. (Note that the series is geometric
if and only if equality holds.) In this paper we investigate
the representation of positive real numbers less than or equal
to one by generalized geometric series of the form >, x'/c,
where the c; are positive integers and = = 1.

1. Preliminary results.

Lemma 1. If 32.1/a; is @ g.9.s. and
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Proof. Since |a,/a;..| < |ar/ar+.|® for all £ = 1, we have
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The following theorem readily follows from Lemma 1.

THEOREM 1. The g.g.s. D=, 1/a; converges if and only if there
exists k such that |a,| < |@x.,].

THEOREM 2. Let >\2,1/a; be a g.g.8. with 0 < a, < a,. Let a =
2 Ya;, S, =Xk 1/a; and t.y, = apfa, — 1. Then
(i) the sequence of half-open intervals {(S., S, + 1/(a;, — ax)]} is
a sequence of mnested intervals whose intersection is «,
(i) =t < Vag(a — S,).

Proof. Since the series is a g.g.s., we have

1 - 1 + 1
Qpyy — Qg Qpry Qpto — Aty

Hence the sequence of intervals in (i) above is nested. Also a, < a;.,
for all £ = 0. Thus, using Lemma 1,
1 1

Ay — Qg Aptiys
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Since a,/a..; < a,/a, for all k¥ = 0, we have

0<lim—2t  <lm— L1 _p,

koo Qpyy — Oy koo ak(al )

Qo

and it follows from (1) that the intervals converge to «a.
Inequalities (ii) are obtained from (1) and the definition of ¢,.

COROLLARY. Let x>0 and let a = 3.2, x:/c; be a g.g.8. with
0 <ew <ey let S, =Sk ae; and 8,4, = ¢,iJe, — 1. Then

(i) the sequence of half-open intervals {(S;, Si + «***/(cir, — xe,)]}
18 a sequence of mnested intervals whose intersection is «,

(i) s = spr = Y (er(@ — Sp)) + (x — D).

Proof. Apply the theorem with a, = ¢,/x* observing that in this
case

tor, = Corr 1 S + 1 -1,
xe, x

3. The representation of reals. The corollary to Theorem 2
suggests an algorithm for constructing a g.g.s. of the form >, x'/c;,
where the ¢; are integers and x = 1, which converges to a given posi-
tive real number 8 < 1.

To obtain such a series let {s, s,, s, ---} be any sequence of posi-

tive integers such that s, = [1/8] and, for k£ = 0,

ax{ 2 L - <sus 2@ 1)
maxq—-————— —1, g, — Sy & —— x —
c(B — Sy) * o cu(B — Sy
where ¢, = [[4= (s; + 1) and S, = >\i, xi/e;.
Such a sequence of integers exists since
(B — S = cpu(s + (B — Siy) — oF
k
< ¢y ———x———+x> - S,.) — 2zt =2¢,_ (B —8S,_,
s e gy + o)~ S ei(B = 5.2
and hence
k k+
s<—2F 4 e-1))=s—Y 4 @-1).
"7 (B — Sis) c(8 — Sy
The resulting series, 3., 2'/¢; where ¢; = [[i_,(s; +1), is a g.g.s.

since s,,, = s,. Also since 8 <1,
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Thus the series satisfies the hypotheses of the corollary to Theorem 2.
Now from the manner in which the sequence {s,} has been obtained,

we have

= xc, .

¢ = (8 + 1)e, >

xk+1 xk+1

_ 1<y £E——F (-1
c(B — Si) o c(B — Si)
and thus
k+1 E+1
S =8+ ———— <B=S, + z
e g Ci(Sp+1 + 1) * (g1 + 1 —w)

k4l

= Sk -+ __L_ .

Cry1 — XCy

Therefore, by (i) of the corollary, 8 = >\, &i/c;.
If x =+ 1, the sequence {s,} obtained by the above process is not
unique. For example, if 8 =1 and # = 2, we have s, = 1,

max{ —-1,s, — 1}

B — 1

=max{l,0} =1 and a

+ax—1=3.
-1

0

Thus there are two possible values for s;,. To obtain uniqueness, we
must further restrict the s,. One restriction that leads to a unique
representation is to require that s, = xs,_,. We now turn our atten-
tion to series which satisfy this condition.

THEOREM 3. Let s>0, a =1. For k=0, let s, =a*s, ¢, =
Eo(si +1). Then 3\, a'c; = 1/s; that is

1 1 x? x?

s sl GrDm D GiDmiD@s I

Proof. Let S, = >} ,z;/c;, We shall show by induction that
S, + 1/e,s = 1/s for all k = 0. For k = 0, we have

s+ b Lap Ly L (srl)_ 1
CoS Co s s+ 1

If S, + 1/e,s = 1/s, then
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k+1
1 =5, + & 1
Ci+18 Ci+1 Cr+18
_].__L_*_ 1( skt + 1 >__ 1
s(szF+t + 1)

S+ +

S .

s S ¢

It also follows by induction that ¢, > (s + 1)* and hence, since s +- 1 > 1,
lim,_ .. 1/¢,s = 0. Thus lim,_.. S, = lim,_. (1/s + 1/¢;s) = 1/s.

THEOREM 4. Let x = 1. Let {s,, s, S, -} be a sequence of posi-
tive integers such that s, = xs,_, for all k = 0 and let ¢, = I, (s; + 1).
Then >.7,%'c; is a convergent g.g.s. Furthermore if a = 3,2, '/c;
and S, = Dk, x;/c; then

(i) the sequence of half-open intervals {(Sy, S; + x*+'/(¢rs, — )]}
18 a sequence of mested intervals whose intersection is «,

(ii) 8441 = [#* Jer(a — Sy)] for all £ =0, s, = [1/a],

(iii) <f « s rational, then a is rational if and only if sk = wxs,_,
for all k sufficiently large.

Proof. Since ¢;/c;_, = s; + 1 < 8,4, + 1 = ¢;44/¢;, it follows that

[72Y < (Ciz1 \( Cit1
xi = xi—1 xi+1

and hence >3, x'/c; is a g.g.s. The series converges by Theorem 1

since ¢, < ¢,/x.
To establish (i), we first observe that s,.;., = #’s,,, for all 7 = 0.

Thus, using Theorem 3, we have

had xk+.’i+1
Sk < Q= Sk + Z
1=0 Cpyj+1
k+1 1 x
=S +2 < +
¢ Cr Spyr + 1 (Sk+1 + 1)(Sp42 + 1)

x? )
+ 4o
(Skt1 T D)(Spae + 1)(Sp45 + 1)

xhtt < 1 n x
€ \Spyy + 1 (Sk+1 + D)(@sp4y + 1)

=S+

xZ
. b o)
(Sk+1 + D@84y + 1)(@"8krs + 1)

k+1
v . 1 - Sk +

Ck Sk+1 Cr+1 — Ci

1
ket

=Sk+

Furthermore, since s,,, — ©s,;; = 0, we have
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xk+1 _ xk+2 . xk—}-l (Sk—H + 1 _ x >
CrSk+1 Cr+1Sk+2 Cr+1 Sk+1 Stz
kott 1 x gkt
e )g .
Ci+1 Sk+1 Sk+2 Ci+1
Thus
k42 b1 k2 k1
X X @x €T
Sk+1+"‘———:Sk+ + §8k+
Cr+1Sk+2 Cr+1 Ci+1Sk+2 CrSk+1

and the sequence of intervals in (i) is nested. Since

xk+l xk+1

A YR i
Cr+1 — Cg Cr+1 — LC

S, +
by part (i) of the corollary to Theorem 2, the intersection of the in-
tervals is a.

To establish (ii), we have from (i) that

e+t _g ca<8 + k1
g Ci(Sp+1 + 1) e = CrSk+1 )
Solving these inequalities for s,.,,, we have
k+1 k41
2) S AR N S QA R—
( c(a@ — Sy) e cla — Sy)

Also, since s, = 2*s,, using Theorem 3, we have

1
s+ 1

1 . 1
s+ 1 (se + V(xs, + 1)

x? 1

+ 4 oeee = —
(sy + L) (s, + L) (a%s, + 1) S,

=S, <a=

and hence s,)=]1/a].

We turn now to the proof of (iii). Suppose s, = ws,_, for all
k >k, Then s, .; = a’s, for all j = 0. Thus, again using Theorem
3, we have

ko
a:Sk0_1+ a < 1

Crg—1 “Skg+1

X a?
+ + + . '>
(Skor0)(@sy, + 1) (3k0+1)(x3k0+1)(x23k0+1)
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which is rational if x is rational.
Conversely, suppose « is rational. From (2) we have

xk+1 xk-}»l

——— < Ca—8S)) = .
Spr + 1 3 * Sk+1
Thus
)
0 <cpp(@— Sip) = Ck+1<a - Sy — )
Cr+1
(3) = Ci(Sk+1 + (@ —S;) — aF+

xk+1 _ _ hal _
= Ck(m + 1)(“ S,) — & = e ~ S)) .

Hence, if a = p/q, for all &k we have
0 < cpon(p — Sii@) = cu(p — Siq) -

Therefore, noting that ¢,S, is an integer, {c,(» — S.9)} is a nonincreas-
ing sequence of positive integers and thus for % sufficiently large, say
k > k,, the terms of the sequence become constant. Hence, for k& > k,,
Crr(@ — Spi) = e(@ — S,) and thus equality must hold in (3). There-
fore s, = z*+'Je, (¢ — S,) for k > k, and, for k sufficiently large,

wk+1 Q/'k

Ser = el — S,) - (@ — S,_y)

:xsk.

THEOREM 5. Let 0 < 8 < 1 and let © be a positive integer. Then
there exists a unique sequence of positive integers {Sy, Sy, S, +-+} such
that s, = ws,_, for k =1 and B = 3.2, 2°/c; where ¢; = T[], (s; + 1).

Proof. Define

1
80:[—5], COZSO—I—l, 0:%
and, for & > 0,
gkt gkt
Spr1 = [m] s Cirs = (4 + ey, St =S, + ot .

Then, in the same manner as inequality (3) was obtained, we have

Cin(B — Spiy) S e(B — Sy .
Thus
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xk+1 xk+1

R i I S 1o S
(B — Sp) cii(B — Sp_y)

Spy1 >

k

“oosy) tEm L

Since s,., and xs, — 1 are integers, it follows that s,,, = xs,.

from the definition of s,.,,

$k+1 1 < < .’I}k+1
—_ Spt1 = —m———— .
(B — S)) B — Sh)
Therefore
8 < Si=S+%" cp<g + 2"
k E+1 — k Ck+1 = k m .

609

Also

Thus from Theorem 4 (i), 8 = 3.7, #'/c;. The uniqueness of the se-

quence {s,} follows from Theorem 4 (ii).
Received March 20, 1968.
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