Pacific Journal of

Mathematics

A NOTE ON RECURSIVELY DEFINED ORTHOGONAL
POLYNOMIALS

DANIEL PAUL MAKI




PACIFIC JOURNAL OF MATHEMATICS
Vol. 28, No. 3, 1969

A NOTE ON RECURSIVELY DEFINED
ORTHOGONAL POLYNOMIALS

DANIEL P. MAKI

Let {a:}7, and {b;};=, be real sequences and suppose the
b;,s are all positive., Define a sequence of polynomials {P;(x)};~,
as follows: Py(x) =1, Pi(x) = (x — ao)/b, and for n =1

(*) ann+1(x) = (x - am)Pn(x) - bn—lpn»1<x) .

Favard showed that the polynomials {P,x)} are orthonormal
with respect to a bounded increasing function ¥ defined on
(—oo, +). This note generalizes recent constructive results
which deal with connections between the two sequences {a.}
and {b;} and the spectrum of ¥, (The spectrum of ¥ is the
set S(W) = {2: Y2 +¢) —y¥(A—¢e) >0 forall e > 0}.) Itisshown
that if b; — 0 then every limit point of the sequence {a; is
in S(¥).

2. Preliminaries. In order to use theorems from functional
analysis, consider the space &yr) = {f: SM Sy < e}, This is a
Hilbert space where the inner product is gi?zed by (f,9) = S fodvy
and where we identify all functions which agree on S(v). In [2],
(p. 215), Carleman showed that the condition 31/1/b; = o implies
that when + is normalized to be continuous from the left and to have
A(—o0) = 0, ¥(+) = 1, then it is unique. In [6], M. Riesz showed
that if +r is essentially unique then Parseval’s relation holds for the
orthonormal set {P;} in the space &*(vv). Hence the set {P;} is dense
in this space.

We now make the assumption that lim b, = 0. Combining the
Carleman result and the Riesz result we see that + is essentially
unique and the polynomials {P;} are a dense set in &“*(+). Using
this information we define an operator A on a dense subset of _&2(af).
The domain of A is the set of all functions f which are in 7%+
and for which zf is also in ~*(y). We take A to be the self-adjoint
operator defined by (Af)(x) = xf(x). By inspection of (x) we see that
for ©=1,2,3, --- we have

(xx) A(P) = b;_ Py + a;P; + bP;y, .
We call A the operator associated with the sequences {a;} and {b;}.
3. Theorems. Let o(4) be the spectrum of the operator A4, i.e.,

all points A where A — A\ I does not have a bounded inverse. Then we
have the following:
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LeMMA. o(A) < S(¥).

Proof. Let neo(A). Since A is self-adjoint, A is in the approxi-
mate point spectrum of A. Hence there exists a sequence {f,} in the
domain of A satisfying {|f.ll=1, n=1,2,.--, and |[(4 — M) f.|]|—0
as n-—— oo, Now by the definition of the norm in &~*(y) this means

Swfidw =1,n=12 -.--, and S+”(x—k)2f3,d11r—>0 asn—c, Now

-0

suppose A € S(+). Then there exists ¢ > 0 such that
YN+ 8 —ph —¢)=0.

Thus + has no mass in the interval [ — ¢, A + €], and we have

Sz—efidn/r + S“”fm 1, n=1,2 .-,
—o A+e

and

+oo

SH(x — AR + g (@ — i —0 as m— oo .
+oo Ate

But these are contradictory since
A—e o
o=y + (7 @ - vperidy
—oo Ate

= e[| Tray + [T riav] =2
—oo I+e
This completes the proof.
We are now ready for our result about S(+). It is motivated by the
results in [5] where we constructed + in the case where b, — 0 and
{a;} has only a finite number of limit points.

THEOREM. Let the sequence of polynomials {P.}; be recursively
defined by (x) and assume b, > 0 for each © and b;— 0. Then each
limit point of the sequence {a;} is a point of the spectrum of the
associated distribution function +.

Proof. From the above lemma it suffices to show that each limit
point of the sequence {a;} is in g(A). Thus let A be a limit point of
{a;} and suppose {a;.} is a subsequence converging to A. Next let
fa@) = Pyoy(x), n=1,2,8, -... By the defining relation (%) and by
the definition of A, we have

(A —=NFaP =@ = NP [
+ oo
= S_m Bicny<1Pimy—1 + (@) — N Pigay + by Py )’y
= bln)—1 + (@icmy — N + i)
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Now b,— 0 and a;, — X, so we see [[(A—N)f,.|f—0 as n— co.
Moreover || f.|| = || Pyw|| =1, so A€ o(4) and the proof is complete.

REMARK. If we choose the a;’s to be dense in the real line, for
example any enumeration of the rationals, then for every set of b;,’s
satisfying b, — 0 we have S(v) = (— o, + o).

CONJECTURE. The converse of the above theorem does not hold
since in [5] our construction exhibited points of S(y) which were not
limit points of {a;}. However each limit point of S(v) was a limit
point of {a;}. So it seems reasonable to conjecture that when b, — 0, )
is a limit point of S(y) if and only if N is a limit point of {a;}.
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