Pacific Journal of

Mathematics

COMPARISON OF HAAR SERIES WITH GAPS WITH
TRIGONOMETRIC SERIES

JAMES R. MCLAUGHLIN AND JUSTIN JESSE PRICE




PACIFIC JOURNAL OF MATHEMATICS
Vol. 28, No. 3, 1969

COMPARISON OF HAAR SERIES WITH GAPS WITH
TRIGONOMETRIC SERIES

J. R. MCLAUGHLIN AND J. J. PRICE

We study Haar series with gaps and show striking differ-
ences between these series and lacunary trigonometric series.
For example, we prove that under certain gap conditions Haar
series are finite series almost everywhere.

Haar’s orthonormal system {y.(¢)} is defined as follows on
[0, 1:x(t) =1 and for m =2"+ k with 0k <2, n=0,1, .--

An(t) = 277, t e (k/2", (k + 1/2)/27)
= =2 te((k + 1/2)/2", (k + 1)/2")
=0, te[k/2", (k + 1)/2],

and at the three remaining points we let ,.(¢) be equal to the average
of the right and left hand limits. Thus, in contrast to the trigono-
metrie system, if 2" < m < 2"+, the Haar function y,(t) is supported
on an interval of Length 2-" and

|| 12a(t) dt = 2

For fe L(0,1) we call

a,(f) = S;f(t)xm(t)dt, m=0,1,---

the Haar-Fourier coefficients of f and Y.o_, a,.(f)x.(t) the Haar-Fourier
series of f.

P. L. Ul'janov has noted [8, p. 42] that if {m,} is an increasing
sequence of positive integers for which > (m,)™ converges, and if the
gap series Y| a,,,,(t) is the Haar-Fourier series of a bounded function,
then the series converges absolutely almost everywhere (cf. [9, p. 247)).
The following theorem strengthens this result.

THEOREM 1. (i) If {a,} ts any sequence of real numbers and {m,}
18 an increasing sequence of positive integers such that > (m,)™
converges, then >.v., 0., (1) is a finite series for almost every t € [0, 1].

(ii) If 3 (m,)™" diverges, then there exists a sequence of real
numbers {a,} and an increasing sequence of positive integers {n,}
satisfying

(a) S =31 s N=1,2 .-,
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(b) > awy.[(t) is the Haar-Fourier series of felL”, for all
pell, o),

(¢) Xlapx. ()] diverges for almost every tel0, 1].

Proof. Part (i). Let E, denote the support of y,(¢) on [0, 1]

form=2"+kwith0<k<2, n=0,1,---. Then
1 1 2
— = Em ——
m= 2 “ )<m

where ((E,) denotes the measure of E,. Thus, 37, p(FE,,) converges
and consequently y(limsup, E,,) = 0 [5, p. 40, Exercise 6].
Part (ii). Choose a sequence of real numbers {b,} satisfying

(1) S < o and X [b| = oo .
Set
(2) £8) = 3 b, = 3 bu(2re)- :Z_k 2n(t)

where 7,(t) denotes the mth Rademacher function [1, p. 51] and {p.}
is an increasing sequence of positive integers. Now let {a,} and {n,}
be defined by the right side of (2). Then if {p,} increases fast enough
(a) holds. Also, since > al converges, the right hand side of (2) is
the Haar-Fourier series of its sum f(¢) [1, p. 47]. The remaining
properties follow from (1) by well-known properties of Rademacher
series [9, p. 213].

Remark 1. It would be interesting to know if in condition (b)
in Theorem 1 one might replace fe L*, for all pe|l, =), by f continuous
or even f bounded.

REMARK 2. A. M. Olevskii has proved [6, p. 1382] that for every
complete orthonormal system (and hence the Haar system) there exists
a continuous functions whose Fourier series is absolutely divergent
almost everywhere.

It is known [3, p. 243] that if a lacunary trigonometric series is
the Fourier series of a function f, then fe L? for every ge|l, o).
This result is not valid for Haar series as we now prove.

THEOREM 2. For every p =1, there exists a function fe L* with
Haar-Fourier series 3, G, Xm,(t) where m,,jm;, = 2, k=1,2, ---, and
such that for every q > p, f¢ L°.

Proof. Define
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ft)y =@ n)r if te(@2 27, n=1,2 ...
Then

Flrmra =3 @ay2e <o,

but if ¢ > p,

o

S; [f@) 7 dt =3, (Zﬂ.n—Z)q/p,z—n — -,

n=1

Also, the Haar-Fourier series of f is

a(f) + 3, anlLr(D) -

If a lacunary trigonometric series is a Fourier series with Fourier
coefficients {¢,}, then 3 ¢i converges [9, p. 203]. As Theorem 2 shows,
for Haar-Fourier series, this need not be. We can even obtain a
stronger result.

THEOREM 3. Let {a,} be any sequence of real nmumbers. Then
there is a function in L(0, 1) with a gap Haar-Fourier series

(3) ;,Z: O Xm, (E) -
Proof. If m=2"+Fk with 0k <2, n=0,1, .-+, then

and so there is a sequencz of positive integers {m,} increasing so fast
that

Ln(t) | dt = 27 < 2

Sl || 1m0 dt < eo

Hence, series (3) is the Haar-Fourier series of its sum by Lebesgue’s
dominated convergence theorem.

If a lacunary trigonometric series converges to zero in a set of
positive measure, then all the coefficients of the series equal zero [3,
p. 265]. For Haar series this result is not valid. In fact, we have
the following.

THEOREM 4. For every t,c|[0, 1], there exists a gap Haar-Fourier
8€ries D) Uy Am, (1), where my../m, = 2, which converges to zero for
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t # t, and diverges for t = t,.

Proof. If t, =1, we set @, = —1, @+, =2"% for n =0,1, ...,
and a,, = 0 otherwise.
If ¢,€[0,1), then for the sequence of integers {k,} satisfying

(k)27 <t < (k, + 1)27" ’ n=0,1 ...
we set

a,=1, m=20
= (=122 o =2"+k,, n=0,1,..
= 0 otherwise.

Then, using the fact (which is easily proved inductively) that

an—1

nZ:B nYn(t) = 2", te((k,)27", (k, + 1)277)

for n = 0,1, ..., we obtain our desired result.

COROLLARY. A monempty set is a set of multiplicity for Haar
series.

REMARK 3. G. Faber had previously shown [4, p. 111] that the
point %, = 1/2 was a set of multiplicity for Haar series. Also F. G.
Arutjunjan and A. A. Talaljan noted Theorem 4 for ¢, = 0 [2, p. 1405].
On the other hand, M. B. Petrovskaja proved that the empty set is
a set of uniqueness for Haar series [7, p. 797].
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