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In a recent paper, Sims obtained some striking applications
of graph theory to group theory. Using his work, Wong
determined every finite primitive permutation group in which
the stabilizer of a point has some orbit of length three. The
techniques of Sims and Wong can be applied to other situations
that occur in investigations of finite groups. In this paper
we obtain some applications that we will use in studying
weakly closed elements of Sylow 2-subgroups.

THEOREM 1. Suppose P is a subgroup of a finite group G, g €G,
and PNP? is a normal subgroup of prime index p in P*. Let n be
a-positive integer, and let G=<P,P% .-+, P™ > . Assume that:

(1) g normalizes no nonidentity normal subgroup of P, and

(2) PnZzZ@G) = 1.

Then | P| = p' for some positive integer t for which t < 3n and
t = 3n—1. Moreover, if n=2,p =2, and t = 6, then P contains a
nonidentity normal subgroup of G.

THEOREM 2. Suppose H is a subgroup of a finite group G, P is
a Sylow 2-subgroup of H, O,(H) # 1, and H/O(H) s a dihedral group.
Let S be a Sylow 2-subgroup of G that contains P, and let | P| = 2°,

(I) Suppose yec S-P,y*c PC(P), and y normalizes P. Assume
y does not normalize any nonidentity normal subgroup of H contained
in P. Then 2 <t <4, and H/K(H) ts isomorphic to Z, X Z,, S,, or
S, X Z,.

(II) Assume the hypothesis of (1), and suppose further that
NgO(H)) =P. Ift=2or t =3, then S is a dihedral or a semi-
dihedral group. It t = 4, then S is a group of order 32 generated
by elements x,y, and z satisfying

P=y===[yzrl=1, [, y] = a°, and [z, 2] = =*.

(III) Suppose P < S and N4 (Q) = P for every nonidentity normal
subgroup Q of H that is contained in P. Then H satisfies the con-
clusions of (I) and (II).

Throughout the paper, we will assume that G is a finite group.
We will generally use the notation of [5] and [9]. In particular, if
G denotes a permutation group on a set 2 and ac 2, G, will denote
the stabilizer of & in G. Also, Z,, D,, and S, will denote the cyeclic
group of order n, the dihedral group of order », and the symmetric
group of degree m.
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If H is an element or a subgroup of G and if geG, we let
H? = g'Hg. Suppose H is a subgroup of G. We let O,(H) denote
the largest normal 2-subgroup of H and K(H) denote the 2-regular
core, or largest normal subgroup of odd order, of H.

2. Applications of Sims’ method. The proof of Theorem 1 de-
pends on the arguments in Sims’ paper [5]. The following result is
essentially a restatement of his Proposition 2.6.

LEMMA 1. Let ¢ and g be elements of G. Put x; = x*° = g~iaxg’
fori=0,=%1, ..., and define H, = < x,, «++,%; > for each ¢ = 1. Let
H,=1. Suppose that x has prime order p and that there exist
positive integers t and n such that

(1) <H,g>=@G,

(2) |H: H,_,| =, 1515t and

(3) H, contains no nonidentity mormal subgroup of G and mo
nonidentity subgroup of Z(H,.,).

Then t < 3nand t # 3n—1. Moreover, if n =2,p = 2, and t = 6,
then H, contains a nonidentity normal subgroup of H,.

Proof. Let s=t+ 1. Suppose 1<i=¢. By (1) and (2), G =
<#®,9>=<H,g> and | H;| = p*. By (8), g does not normalize
H;. Now the proof of Lemma 2.7 of [5] remains valid; that lemma
states that H,; is Abelian whenever 1 < 1 < (2s + 1)/3 = (2t + 3)/3.

Assume that ¢ > 3n or that ¢ = 3n — 1. Note that in the latter
case, t +mn is odd. Let i =t +n+1)/2 if { + n is odd, and ¢ =
t+n+2)/2if t+mn is even, Then 1 £7=<¢ and 20 —1>¢ + n.
Therefore H, N Z(H,_,) = 1. Since

Hyy = < H, (H)"™" >and z;¢ H; 0 (H)",

H, is not Abelian. By the previous paragraph, 7 < (2t 4 3)/3, which
yields a contradiction.

Now suppose n =2,p=2, and ¢ =6. On pages 85-86 of [5],
Sims proves that

[x;,2;]=1 for [1 —7| <3
[, ] = 5, [22, %] = 2, [%s, ;] = x5 ,
and
[2:, 2] = asaf [2,, @] = @,
for some integers ¢, d. Therefore,

[2s, %] = [, )" = @il , [, %] = [0, %) = @ .
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Thus Hy = < @, *++, ¥ > normalizes < &, &,, ¥, ¥; >. This completes
the proof of Lemma 1.

Suppose G is a transitive permutation group on a set 2. Let
aec®, and let 4 be an orbit of G, on 2. By Propositions 4.1 and 4.2
of [5], there exist 4(8) and A4'(B) for each Be 2 such that:

(1) A(B) and A'(B) are orbits of G; on 2 and A(a) = 4,

(2) A(@) = A(e*) and A'(a)* = A'(a’) for all ge G, and

(8) Bed(w) if and only if ae 4'(B).

Let £ ={(B,7)|BeR,veA(B)}. Then (2, E) is called the graph
of A. It is undirected if A(a) = A'(«) and is directed if A(a) = A'(«).
By Proposition 4.3 of [5], G acts as a group of automorphisms of the
graph of 4 and is transitive on both the points and the edges.

LEMMA 2. Suppose ge G and a’c A. Then the graph of A is
connected if and only if < G,, 9 > = G.

Proof. Let H= <G, g> and I'={a"|heH}. Then 4=
{a® |z e G,}. By the proof of Theorem 7.4 of [7], I" = 2 if and only
if H=G. For every a*el’,

Ala?) = A(@) = {a*** |2 e Gl ST

Similarly,
Aty = At = {ar = |xe G ST .

Thus, if the graph of 4 is connected, then I" = Q.

Conversely, assume that H = G. Let @ be the connected com-
ponent of « in Q. Since G acts as a group of automorphisms on the
graph of 4, each element of G, maps @ onto itself. Similarly,
@’ = @ because a’c @' N A(a)S?* N @. Thus, @ = 0% = 0 = 0,
This completes the proof of Lemma 2.

Let us assume the notation of Lemma 2. Suppose ¢ = 1. Define
a t-arc to be an ordered (¢ + 1)-tuple of points of 2, say, X =

(2, @y, ++ -, ), such that a;,, € A(a;), 0 £ ¢ < t. Any t-arc of the form
(e, +++,a,,7) is called a successor of X, and any t¢-arc of the form
(7, &, + -+, a,_) is called a predecessor of X.

LEMMA 3. Assume the hypothesis of Lemma 2. Suppose t =1
and the graph of A is connected. Let X and Y be t-arcs. Then there
exists a sequence X = X, ---, X, =Y of t-arcs such that X, is a
successor of X; ,,1 <1 7.

REMARK. For ¢t =1, this is equivalent to Proposition 3.1 of [5].

P’I‘OOf. Let X = (aoy Ay oo, at) and Y = (Bo: Bu M) Bt)' By
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Proposition 3.1 of [5], there exists a finite sequence &, = 7y, 7, +++, 7. = B,
such that v;e A(v,_) fori=1,2,-.-,s., Letr =s+ ¢, and let v, = B,_,
fori=s+1,8+2,..-,8 4+ t. Define X, = X,

Xi = (i Ay v ooy Ay Viy 200y 5) 1=i=st-1),
and
Xivi = (Vi Yoy =%y Vixe) 0=1=5).

Then the sequence X,, X,, ---, X, satisfies the conclusion of the lemma.

Proof of Theorem 1. Clearly, we may assume that G = < P, g >.
By condition (1) of the theorem, G is faithfully represented as a per-
mutation group on the set of all cosets Px, « € G, and P is the stabilizer
in G of the point « = P1. Let h = ¢ and 8 = a*. Then

Gy =G NG =G, NG '=PnP",

Since PN P?¢ is normal and of index p in P4 G,; is normal and of
index p in P. Let 4 be the orbit of P on £ that contains 8. Then
|4 =8| =|P:Ps| =|G,: Gy | = p. Since P, is normal in P and P
is transitive on 4, P, fixes every point of 4. Thus P induces a re-
gular group of permutations on 4. We define A(7), v € 2, as above.

Suppose t = 1. We define t-arcs as above. The arguments of
§5 of [5] now give us the following results:

For some t,, G is transitive on the set of all ¢-arecs but not on
the set of all (¢, + 1)-arcs (Lemma 5.7).

G acts regularly on the set of all ¢{-arcs, and | P| = |G, ]| = p'
(Lemma, 5.12; see Lemma 3 above).

For any trarc X = (a,, «,, «++, ), the stabilizer of «, «,, ---,
and «, , is generated by a single element x of order p. If X* is a
predecessor of X, then < «*, ---,x* > has order p' for 1 <14 < ¢,
Moreover,

gk eee, B> = P (Lemma 5.13).

Let t = t, and let X be the (¢--1)-tuple given by X = («a, a*, - - -, a*").
Since a* = B e 4, we have a*'*' = B ¢ A(a)*; = A(a*’) for all ;. Hence
X is a t-arc and X* ' is a predecessor of X. Let k=g = h, and
take & as in the last mentioned result above. Put z;, = z** for all
2 =1. Then

By e, >=Pand <@, Xy, 00, Lpyy > =< P, P9 eee, P> =0,

Now we may apply Lemma 1 to prove Theorem 1.

COROLLARY 1. Suppose P and H are subgroups of G, ye N(P),
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and ac H. Assume that H = < P, P* > and that P N P*® is a normal
subgroup of prime index p in P. Let n be a positive integer, and
let G =< H,HY, ---, H" " >. Assume that:

(1) ¥y normalizes no nonidentity normal subgroup of H contained
wn P, and

(2) PnZzZ@G) =1.
Then | P| = p* for some positive integer t for which t < 3nand t + 3n — 1,
Moreover, if n=2,p =2, and t = 6, then P contains a nonidentity
normal subgroup of G.

Proof. We merely verify the hypothesis of Theorem 1 for g = ya.
Now, PnP"=PﬂP“ and < P,P*> =< P,P*> = H. Let H, =
< H,H? +++,H" > for all ¢ = 0. Since

Hy,=<H,H)>=<H,H)>=<H,H!>,
we obtain H, = < H, H*, ---, H"" > by induction. Therefore,
G=H, ,=<H,H -+, H" "> = < P,P? «+., P >,

Now Theorem 1 applies.

3. Applications of Wong’s method. To obtain Theorem 2 from
Theorem 1, we use the methods of Wong’s paper [9] and some known
results about 2-groups.

LEMMA 4. Suppose S is a Sylow 2-subgroup of G and P < S.
Assume that P is a Klein four-group and that Cs(P) = P. Then S
is a dihedral or a semi-dihedral group.

Proof. Clearly, Z(S) < P,and P = Z(S) x <t > for some te P,
Now Cy(t) = Cs(P) = P. By a result of Suzuki (Lemma 4, pp. 262-263
of [6]), S must be dihedral or semi-dihedral.

LEMMA 5. Suppose a Sylow 2-subgroup S of G has order 32 and
1s generated by elements x,y, and z satisfying

8

x:yzzzzz[y’zlzl, [x’y]:zr [x7z]:x4'

Then G has a normal 2-complement.

Proof. For every subgroup H of G, let H* be the subgroup of
H generated by the elements h* h e H. Since every group of exponent
one or two is Abelian, H/H? is Abelian.

In page 244 of [9], it is proved that G has a normal subgroup G,
of index two such that
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GNS=<a,y,z2>=<ay>xXx<2>=Dx Z,.

Let G, = (G,)’. By a result of Wielandt (Lemma 5(a) of [2]), z¢ G..
Now, @, is characteristic in G, and therefore normal in G. Since
[z, ¥] = 2, G/G, is a non-Abelian 2-group. Thus G/G. has at least two
generators, and

|GIG* = |(G/G)/(G/G.)*| = 4.
However, S < SN G* and |S/S?| = 4. Therefore,
GNS=8*=<a2>=2Z, X 2.

Hence G* has a Sylow 2-subgroup, S? that is contained in the center
of its normalizer. By a result of Burnside ([4], p. 203), G* has a
normal 2-complement. This complement must be a normal 2-comple-
ment for G.

Proof of Theorem 2. (I) Since P is a Sylow 2-subgroup of H,
O,(H)ES P. As O,(H/O,(H)) =1, | HIO(H)| = 2m for some odd number
m. Therefore, H/O,(H) is generated by two conjugates of P/O,(H).
Take a € H such that H = < P, P*>. Then PN P* = O,(H).

Let G = < H, H* >, and let Q be the largest normal subgroup of
G contained in P. Take be P and ce C(P) such that y* = be. Then
HY = H* = H°. Therefore,

H*= H" < G'< N@), and H=< N(@)™) = N@") .

Hence N(Q) = <G, H>= < H', H> =G. Since |Q"| = |Q|, Q" = Q.
By (I),Q =1. Thus PN Z(G) =1. In Corollary 1 we let p = n = 2
and obtain 2 <t < 4. The proof of Lemma 5 of [9] shows that P
is isomorphic to Z, X Z,, Dy, or Dy X Z,.

Let M be a cyclic subgroup of order % | H/O,(H)| in H, and let
N = O,(H). Then MN hasindex twoin H and Cyy(N) = Z(N) x Cy(N),
so K(H) = Cy(N). Thus M/K(H) is isomorphic to a group of auto-
morphisms of N. If ¢t =2, then |[N| =2, M = K(H), and H/K(H) =
P=Z, x Z,

Suppose ¢ > 2. Then P is non-Abelian and P’ < N. Since P and
y normalize P’ and H = PM, M does not normalize P’. Therefore,
M/K(H) =1, If t =23, then |N| =4 and | M/K(H)| = 3; therefore
|HIK(H)N| =6 and H/K(H)= S,. Suppose t =4. Then |N| =8
and the automorphism group of N is not a 2-group. Since D, x C,
has no quaternion subgroups, N must be an elementary Abelian group.
The automorphism group of N contains a dihedral group of order 2m/,
with m’ odd, only if m' = 3. Hence | HHK(H)N| = 6. The proof of
Lemma 6 of [9] shows that H/K(H) = S, X Z,.
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(IT) Let T= Ny(P). Then P< T. If t = 2, then P = Ny(N) =
Cs(N), and therefore P = C4P). If t=8, then N= Z, x Z, and
Cs(N) = Ny(N)NCg¢(N) = Co(N) = N. By Lemma 4, S is a dihedral
or semi-dihedral group in each of these cases.

Suppose ¢t = 4. From (I), H does not have a normal 2-complement;
hence, neither does G. Furthermore, P= D, X Z,and N = Z, X Z, X Z,.
It follows that N has only two images under the automorphism group
of P. Since Ny(N)=P,/T/P|=2. Thus T=<P,y>. HULS
and P < U, then P < N,(P) and consequently ye T < U. Therefore,
by hypothesis, Ny(P,) = P whenever 1 < P, < P and P, is a normal
subgroup of H. Now by Lemma 8 of [9] and by Lemma 5, S has
the desired form.

(III) In this case, there exists y < Ng(P) — P such that y*c P,
so the results of (I) and (II) may be applied. This completes the
proof of Theorem 2,

COROLLARY 2. Assume the hypothesis of part (II) of Theorem 2.
If t =2 or t = 8, then G satisfies one of the following conditions:

(i) G has a normal 2-complement.

(ii) G has a normal subgroup G, of index two, and G, has no
normal subgroup of index two and has a dihedral Sylow 2-subgroup.

(iii) G has a normal subgroup G, of index two, and G, has no
normal subgroup of index two and has a generalized quaternion
Sylow 2-subgroup. (In this case, S must be a semi-dihedral group.)

(iv) G has no normal subgroup of index two, and the elements
of order two in G are all conjugate in G.

If t =2 and G satisfies (i) or (iii), then Co(K(G)) = 1. If t =3,
then G cannot satisfy (i) or (ii). If t =4, G satisfies one of the
Jollowing conditions:

(v) G has a normal subgroup G, of index two, and G, has no
normal subgroup of index two and has a semi-dihedral Sylow 2-
subgroup.

(vi) G has a normal subgroup G, of index four, and G, has no
normal subgroup of index two and has a dihedral Sylow 2-subgroup.

Proof. If t =2 or t = 3, then S is dihedral or semi-dihedral, by
Theorem 2. A dihedral group has no generalized quaternion subgroups.
Therefore, G satisfies one of the conditions (i) through (iv), by Lemma 8
of [3] (for S dihedral) and by Lemma 1 and Theorem 2 of [8] (for S
semi-dihedral).

Let K = K(G). Suppose t = 2, G satisfies (i) or (iii), and Cx(K) # 1.
Then P= N x Z(S) and Z(S) £ Z(H). Since |Z(S)| =2 and Cy(K)
is normal in S, Z(S) < Cy(K). However, Z(S)K/K =< Z(G/K). (This
requires the Brauer-Suzuki Theorem [1] if (iii) holds.) Therefore,
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Z(S)K = Z(8) x K, so Z(S) is the unique Sylow 2-subgroup of Z(S)X.
As Z(S)K is normal in G, Z(S) is normal in G. Since [Z(S)| =2,
Z(S) £ Z(G). This is impossible, since Z(S) £ Z(H).

Suppose ¢ = 3. Since H does not have a normal 2-complement,
(i) is impossible, Since H’ contains the four-group N, (iii) is impossible,

Suppose ¢ = 4. The structure of S is given in Theorem 2. The
argument for Case (V') of ([9], pp. 244-245) proves that G has a normal
subgroup G, of index two for which SN G, is semi-dihedral. Now
the structure of G, is given by one of the conditions (i) through (iv).
Since H does not have a normal 2-complement, neither does G,. Suppose
G, has a normal subgroup G, of index two. Then G, is unique and
G.N S is a dihedral or a quaternion group. Therefore, G, is normal
in G. Since |G/G,| =4,G £ G,. As H' N N is a four-group, G,N S
is not a quaternion group. So G.N S is a dihedral group of order
eight. Now G, NS < Ng(H'NN) = P. This completes the proof of
Corollary 2.

We thank the Sloan Foundation for its support during the pre-
paration of this paper. We also thank Professor I.M. Isaacs for
suggesting the present form of Theorem 1.
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