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Recently Neuberger, Zettl and Loud have revived interest
in self-adjoint boundary value problems with interior point
boundary conditions. All three have derived their results
from rather extensive study of the Green’s function associat-
ed with the nonhomogeneous problem. They require G(z, &)=
G(&,2)*.

Rather than approach the problem via the Green’s func-
tion, this article considers the problem as that of a differen-
tial operator in a Hilbert space, derives the adjoint operator,
whose domain specifies the adjoint boundary conditions, and
then produces necessary and sufficient conditions for self-
adjointness.

To do this we employ a variation of the fundamental lemma of
the calculus of variations in the Hilbert space setting, and we note
our method is applicable even when the Green’s function fails to exist.

For convenience we only consider a first order vector equation,
although our results are easily extended to n-th order vector systems.
Finally, our method is extendable to systems whose boundary condi-
tions are applied at an infinite set of points. We hope to pursue this
line in a future paper.

1. The problem and its adjoint. Let us consider an interval
[a, 8] which is subdivided into m subintervals by

Ay, Ay, "'yam~1(a =< < v <Ay < Ay, = b) .
We denote by H the Hilbert space of » x 1 vectors
X:(xlaxzy"°yxn)t1 Y:(ylyyf&y"'yyn)ty

defined on [a,b] whose components are in L*(a,b) and whose inner
product is given by

(X, Y) = S" Y*Xdo = 3, Sbmigidx.

Let us consider boundary operators of the form
MY = 3[4, Y(a;+) + B, Y(a;-)]

1=1,.-.,k, where 4,, =0, B, =0, and Y(a;+) indicates the limit of
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Y(x) as « approaches a; from above or below. We assume that these
boundary operators are linearly independent. Thus & < 2nm. Note,
however, & does not have to equal nm.

We let 4, and A, be continuous # X % matrices, and in addition
assume that Aj(x) exists and is continuous. We denote by D the set
of all n x 1 vectors Y satisfying

(1) Yisin H.

(2) Y is absolutely continuous in each subinterval [a;, a;..],7=
0,1, ---,m — 1, of [a, b].

(8) MY=0,¢=1,--+,k.

(4) AY +A4Y isin H.

We define a differential operator L by letting LY = A, Y’ + A Y
for all Y in D.

It is evident that D is dense in H, and therefore L has a well-
defined adjoint operator L* associated with it.

THEOREM 1. If Z is in the domain of L*, then Z is absolutely
continuous in each subinterval [a;, a;.,],5 =0,1, .-+, m — 1 of [a, b].
L*Z = —(A}ZY + Ay Z in each subinterval

(aivaj+1)rj = O’ 1’ e, M — 1
of [a, b].

Proof. Let H, denote the subspace of D whose elements vanish
at a,a,, +++,a,_,,b. H, is also dense in H.
If Y is in H,, then

S" (L*Z)* Ydo = S" ZHAY + AYds .
Thus
Sb Z*AY'ds = S” [L*Z — A*Z)* Yda .
Since Y vanishes at a,a,, ++-, a,_,, b, integrating by parts,
S" (A*Z) Y'de — — gb{S[LZ — Ag“Z]dt}* Ydz .
So
SZ{ArZ + S [L*Z — A;‘Z]dt}*Y’dw ~0.
We must now find those elements J such that S: J*Y'de = 0. It is
easily seen that S:K *Ydx = 0 if and only if
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gb[S”K*dt] Yids = 0.

a

Since Y is in H,, which is dense H, Y' is only orthogonal to elements
which are constant on each subinterval (a;,a;.,), 7 =0,1,---,m — 1,
Thus

*7 + S [L*Z — A:Z)dt = C(Z) ,
where C(Z) is constant on each subinterval (a;, a;)), 7=0,1, -+, m—1.
If © + a; for some j, we may differentiate, and
L*Z = —(AfZ) + AFZ .

THEOREM 2. If Z is in the domain of L*, then Z satisfies the
Jollowing equations.

k
Af(a;—)Z(a;—) — ;{BZ‘%(Z) =0,
— Axa; ) a; ) — 3 A gl Z) = 0,
where j =1,2, <+, m, and $,(Z) are functionals which depend upon Z.

Proof. Let Y be in the domain of L and Z be in the domain of
L*, Then
(LY, Z) — (Y, L*Z) = Sb[Z*(LY) — (L*Z)*Y]dz
= S" (Z*A,Y)dz

— ﬁ; g“" (Z*A,YYdw

= 3UZ*4,Y)

R

j—1

Let ¢7(Z) be arbitrary parameters, ¢ =1,.-.,%k.  Then, since
MY=01=1, ---,k,

0=3 @z 4|’

F—

k m
- @;1 ¢Z((Z) .1'2=0 [A1.]Y(a]+) + B“Y(a]—)] .
Collecting like terms,
m k
0= JE:II [Z(a;—)*Afa;—) — 2, 68(Z2)B;;1Y(a;~)

m—1

+ 3 1= 2 Aast) — 35524 Via+) -
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Since Y(a;+) and Y(a;—) may be arbitrary, the result follows.

The parameters ¢,(Z) seem somewhat artificial in this setting.
However, if the boundary conditions also involve an integral, they
enter in a very natural way, not only into the adjoint boundary con-
ditions, but also into the form of the adjoint operator.

2. Reduction to an end point problem. The results of this
section are very similar to a procedure of Mansfield’s [2]. Mansfield,
however, parameterized each subinterval [a;a;,,],7 =0,:+-,m — 1,

This is unnecessary.

We make the following definitions. Let I;=[a;_,, a;],7=1, -+, m.

Let 27 denote the nm x1 vector 2 = (Y(x,), Y(x.), -

-, Y(z,))" where

x; is in I,
Ay(x) 0 0
aca| O A 0
0 0 A(%n))
Ay(x) 0 0
0 Aw 0
0 T . . .
0 0 tee Ao(xm) !

& = (4;;_), & = (B;;). Let A consist of the m-tuple

(a0+7 A+, +oe, am—1+) ’

B the m-tuple (a,—, a,—, --
vector (Y(a,+), Y(a,+), -
z/(B).

H is exactly equivalent to the Hilbert space 57 of nm x 1 vec-
tors 2/, where the norm is computed by integrating the first n com-
ponents over I, the next n over I,, ete. In this notation, however
D corresponds to the set & which consists of all nm x 1 matrices
7 satisfying

(1) 2z isin 5Z#

(2) 2 is absolutely continuous in the m-tuple interval [A4, B].

(3) rz(A) + Fz(B) =0.

(4) A2+ A7 is in S~
Then L corresponds to the operator & which is defined by ¥z =
7" + 4z for all 27 in 2.

In this setting our problem has been reduced to one with end
point boundary conditions.

If 2 = (Z(x), Z(x,), +--, Z(x,))" and

«,a,—). By 2/(4A) we mean the nm x 1
-, Y(a,_,+)" with a similar expression for
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P(Z) = (9(Z), $Z), -+, 9 Z))"
the adjoint operator takes the form.
L = (A +
on [A4, B]. The domain of &#* is determined by the boundary conditions
A ZF(A) + () =0,
B2 (B) — Z*0(%) =0.

Green’s formula takes the form

[Lzv2) - (zr2)ols = (2 2) |
= 0 (4) + Z 7 B)]
~0.

On the other hand if &2/ (4) + =2/ (B) completes the number
of independent boundary forms, then there exist complimentary forms

& 2 (A) + &2 (B) and & 27(A) + & 2 (B) such that
glj[?‘ﬁ’*(f/?/) — (& F)r]rdX
= [ 2 (4) + Z > (B[~ (A) + Z2(B)]
+ezA) + BNz w4 + 27B)].

The coefficients of these forms satisfy

which yields the equivalent boundary condition & ¢ (4)+ & 27 (B)=0,
and the formula @®(2")=.% 2°(4)+.Z 2°(B). The following theorem
follows in a manner similar to that of Reid [4].

THEOREM 3. ¥ 1is self-adjoint in 2F if and only if

= — AT, 05 = 04T = AT, ()T
= F . A(B)*F* .

The last result may also be found by substituting the parametrie
adjoint boundary conditions into those for _z73

If the number of boundary conditions % in the original problem
is equal to nm, and if the homogeneous problem (% — )2 = 0 has
only the trivial solution in 5%, then the nonhomogeneous problem
(¥ — N2 = & has a unique solution, which is generated by an in-
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tegral equation.
B
7x) = | 2, 5.7 @)= .

The Green’s function &7 (X, Z) has the form

G, x x) G, X @) +-+ Gz, X )
G(xz X xl) G(xz X xz) ot G(xz X xm)

Gl X 3) G(an X @) -+ Clarm X 22)] *

As a function of X it formally satisfies (& —A)2”=0 and the boun-
dary conditions defining &2, As a function of &, &(X, 5)* formally
satisfies the adjoint equation (&¥* — A\)2” = 0 and the adjoint boun-
dary conditions. If &# is self-adjoint in 57, &2(X, B) automatically
exhibits the usual symmetric properties associated with self-adjoint
boundary value problems which were illustrated by Loud [1].

We finally remark that these results can be extended to higher
order systems with the standard modifications. In the self-adjoint
situations the usual eigenfunction expansions are valid. In the non-
self-adjoint situations expansions similar to Birkhoff’s are possible.
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