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It is known that any f:mction which minimizes a func-
tional of the form J(y) =\ f(z, v, y’) and satisfies prescribed
boundary values must be a sltl)lution of the corresponding Euler-
Lagrange equation: fi(x, v, ¥') — S Se(x, y, ¥) =c. Let us call
any equation of the form: g¢g(x, v, y') — S hzx,y,y')=c a ge-

a
neralized Euler-Lagrange equation.

In this paper we propose a Newton-like method and show
that this proposed method is general enough to enable us to
construct solutions of the generalized Euler-Lagrange equa-
tion,

Let X and Y be Banach spaces, 2 an open subset of X and
P:2—Y. By [X, Y] we mean the Banach space of all bounded linear
operators with the usual operator norm, by P’ the first derivative of
P and by P” the second derivative of P. The class of all functions de-
fined on 2 which have continuous derivatives up to and including order
n at each point of Q is denoted by C"(2). Distinct elements of C™(2)
may have totally distinct ranges depending on the application. The
distinction between Gateaux and Fréchet is unnecessary since the de-
rivatives will be continuous.

2. The weak Newton sequence. Let H and Y be Banach
spaces, 2 a nonempty open subset of H and P: 2 — Y.

DEFINITION. Given x,€ 2 the sequence {z,}7,
Lpi1 = &y — [P,(xn)]_lp(xn) y
is called the Newton sequence for z, (with respect to P).
DEFINITION. Given «,, € 2 the sequence {z,}7,
Lpr1 = Ty — [P,(f)]*lp(xn) ’

is called the modified Newton sequence for z, at Z (with respect to
P). When 2, = T we say simply the modified Newton sequence for x,.

ReEMARK. The Newton sequences exist if and only if P’(Z) and
P’(z,) exist and are invertible and z,€ 2 for all n.
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236 RICHARD A. TAPIA

Let X and Y be Banach spaces, H a closed linear subspace of
X, 2 a nonempty open subset of H and P: 2 — Y.

REMARK. It is easy to verify that 2 is open in X if and only if
H=X.

Let D be the set of all x e 2 for which there exists an operator
['(x) satisfying the following conditions:

(i) I'(z)e[B,, X], where B, is a closed linear
2.1) subspace of Y containing P(Q);

(ii) I'(2)PQ)c H;

(iii) I'@)P(x)=1.H—H.

REMARK. The fact that I"(x) is defined on P’(z)(H) and I'(x)P’(x)
is defined from H into H is a consequence of conditions (i) and (ii).
The following lemma shows this to be true.

LEMMA 2.1. If there exists an operator I', satisfying the follow-
ing conditions:

(a) I',e[B,, X], where B, is a closed linear subspace of Y con-
tatning P(Q);

o) IPQ)cCH;
then for all xe€ 2 we have the following:

(i) P'(x)(H)C B,;

(ii) IP'(x}H)C H.

Proof. Assume xe 2 and ke H. It follows from (a) since 2 is

open in H that for small ¢

P(x + thy — P(w) eB,.
t

Therefore P’(x)(h) e B, and P’(x)(H) C B,. Similarly (a), (b) and the
fact that H is closed imply

IVP(a)(h) = lim [ LeP@ 4 1) = TP e gy

DEFINITION. If e D, then I'(x) is called a left inverse for P’(x).

REMARK. If H= X and B, = Y, then this is the usual notion
of a left inverse.

Let I'(x) denote a left inverse for P’(x).
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DEFINITION. Given z,€ 2 the sequence {z,},
Lpt1 = Ty — F(xn)P(xn) ’

is called the weak Newton sequence for x, (with respect to P).

DEFINITION. Given z,, € £ the sequence {x,}7,
Cp1 = Ly — F(z)P(xn) ’

is called the weak modified Newton sequence for x, at T (with respect

to P). When x, = T we say simply the weak modified Newton sequ-
ence for x,.

REMARK. The weak Newton sequences exist if and only if I'(Z)
and 7'(x,) exist and z,e 2 for all n.

LEMMA 2.2. If xeQ and [P'(x)]"elY, H], then for any I['(x)
satisfying (2.1) we have:

(i) B.=Y;

(ii) I'(2)Y) = H;

(i) I'(x) = [P'(x)]

Proof. Since P’(x) is onto, Y = P'(z)(H). By Lemma 2.1
P’(x)(H) C B,, therefore Y = B,. Also I'(x)y = I'(x)P'(x)[P'(x)y] =
P'(x)'y for all ye Y, therefore I'(x) = [P'(x)]~".

REMARK. In general there are many weak (modified) Newton
sequences for a particular point; however, by Lemma 2.2 if the
(modified) Newton sequence exists, then any weak (modified) Newton
sequence coincides with it.

ExAMPLE. Let P: R'— R? be given by P(z) = (3x — 3/2,2x — 1)
hence P'(x) = (3,2). If I': R*— R' is given by

1—3a
2

Iy, ) = (a, >(x )

for any real a, then I'\P(x) = « — 1/2, I'\P’(x) = 1, the identity map
in R, and the weak (modified) Newton sequence for z, is given by

Lny1 = Xy — FOP(xn) = -‘;*

for all »n. Notice that P(1/2) = (0, 0).

REMARK. In this example there are an uncountable number of
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left inverses for P’(x); also the (modified) Newton sequence for z, does
not exist.

3. Convergence theorems. As before let X and Y be Banach
spaces, H a closed linear subspace of X, 2 a nonempty open subset
of H and P:2— Y. If for each z e 2 there exists an operator I'(x)
satisfying conditions 2.1 and we let B, = N,..B.,, where B, is the do-
main of I'(x), then B, is a closed linear subspace of Y containing
P(Q); consequently by restricting I'(x) to B, we may consider I": Q —
[B,, X]-

THEOREM 3.1. If

(1) there exists x*e Q such that P(x*) = 0,

(ii) for each x e Q there exists I'(x) satisfying conditions (2.1)
and I': Q—[B,, X]e C(2)
then, if Pe CXQ), given 0 < a <1 there exists a netghborhood of x*
contained in Q such that for any 2 points x, and T in this mneigh-
borhood the weak modified Newton sequence for x, at T exists and
converges to x*; we also have

o —w, || = o, — @] .

1—

Furthermore, if Pe C*%2), then there exists a meighborhood of x*
contained in Q such that if x, is any point in this neighborhood a
weak Newton sequence for x, exists and converges quadratically to
x*, 1.e., there exists a constant M such that

le* — @l = M{la* — 2, [

Proof. For xeQ let T(x) = I — I'(x)P’(x*). Given 0<a <1 there
exists 0 > 0 such that {z |||z — z*|| £ 0} <2 and

IT@) | =l T(x) — T || <«

whenever ||z — 2*|| £ 6. Now if |[|[Z —2*|| <0 and S =1— I'Z)P,
then

(i) S(z*) = «* and

(ii) 8@ <ea.
Let || S'(#*) || = &, then there exists 0 < J, < ¢ such that

18(x) — S'(@*) ]| £ a — a

whenever x€ 2, = {z ||| — x*|] < d,}. Clearly 2, is closed, convex and
contained in 2. Also
(i) || S"»)|| £ a whenever x e 2, and
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(i) S(Q) < 2
since if z € Q,,

1S(@) — a* || = [ S() — S(=) ||
<||1S@ + 0@* —a)|lllzs —a*]] 0<6<1
safle -2 || =0, .

The first part of this theorem now follows from a well-known fixed
point theorem [4, 661]. The latter part of the theorem is a consequ-
ence of the following Banach space inequality [3, pp. 162-163].

(B.1) || P(@ + 42) — P(x) — P'(e)(dw) || = 3 [| P"(w + O4a) [ || 4 ||*

0 < 6 < 1. There clearly exists K and ¢ > 0 such that || P"(x)|| < K
and ||I'(z)|| £ K, whenever ||z* — x| <d. If ||a* — x| <, then
from (3.1) with 4x = 2* — © we obtain

(3.2) lo* — [ — F(@)P@)]|| = M||a* — |

where M = $K* Choose 0 < 6, < min (M, 6) and such that
Q={x|l|lz*—zx||=d}CQ.

We now show if X, e Q,, then

le* =2, ll = M| 2* — @, |]*

3.3
@2 < [le* — @ || (M l2* — @) < 9 5

consequently z,.,€2,. For n = 0 inequality (3.3) is just (8.2) with
¢ =z, If we assume (3.3) holds for » < k, then a direct application
of (3.2) shows (3.8) holds for » = k, and consequently for all n. This
proves the theorem.

Consider I'y: B,— X, where B, is a closed linear subspace of Y
containing P(92), satisfying:

(3.4) (1) I've[B, X];
(ii) INPR2)c H.

COROLLARY 3.1. Given x,€ 2, 1if there exists

(i) =*e such that P(x*) = 0, and

(ii) I, satisfying (3.4) and such that I',P'(x,): H— H 1s inver-
tible,
then if x, is sufficiently mear x* and Pec C*Q) a weak (modified)
Newton sequence for x, exists and converges to x*. Furthermore a
left inverse for P'(x) is given by I'(x) = [[P'(x)]'I.

Proof. Use Theorem 3.1 on Q = I",P.
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4. A general problem. Given an interval [a, b] let

X ={yeCla, bl y: [a, b] — R},
H= {heX|Sah: o} ,
Y ={yeCla,b]|y:[a,b] — R},

(4.1) K ={yeY|yla) = ¢, and y(b) = p:} ,
B =Ja,b] x R*,
llyllx = sup{|y@)||te[a,b]} for ye X, and
ylly =sup{ly@®) |, [v'(®)||te]a,b]} for ye Y.

REMARK. If X, Y and H are given by (4.1), then X and Y are
Banach spaces and H is a closed linear subspace of X.

Given continuous ¢: B — R' and y,€ K define

Q:Y—X, and Q:X—X

as follows
(4.2) Q@) = p(z, y(x), y'(x)) for yeY;
(4.3) Qly) = Q(yo 4 Sy> for yeX.

It is clear that if ye X, then y, + Smye Y. Assume @ satisfies the
following two conditions: ’
i ClX1;
(4.4) (_1.) Q(,_: [1]
(ii) [QO)]'e[X, X].

Define P: H— X by

SbFOQ(h)
(4.5) Ph) = Q) — = " for heH,

s

where I', = [Q'(0)]~* and 1 is the constant function 1.

LemMA 4.1. If Q is given by (4.2) and P by (4.5), then the fol-
lowing two problems are equivalent:

Problem 1. Find ye K such that Q(y) is constant ;
Problem 1I. Find he H such that P(h) =0 .

Proof. If ye K and Q(y) is constant, then % =y — y,c H and

(4.6)
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Qh) = Q(yo + Sm(y' — yg)> is constant; therefore P(h) = 0. Now if
he H and P(h) = 0, then Q(h) = Q(yo + Sxk> is constant; therefore y =

Yo + Szh e K and Q(y) is constant.

LeMmA 4.2. If I, and P are given by (4.5), then I’y is a left
wnverse for P'(0).

Proof. We show I'(0) = I, satisfies (2.1) for x = 0. If Bp=X
and 2 = H, then (i) of (2.1) holds. If ke H, then from (4.5) we ob-
tain,

Xirop(h) —0

and (i1) of (2.1) holds. By differentiating (4.5) at the origin we see
that

IP(O)h) = h for heH.

Therefore I',P'(0) = I: H— H and the lemma is proved.
Let y*e Y be a solution of Problem I and 2* ¢ X the correspond-
ing solution of Problem II.

LEmMMA 4.3. For given y, in (4.3)
Ha5 e Yo — ¥ Iy -
Proof. The proof follows from (4.1) and Lemma 4.1.

REmARK. If Problem I has a solution and the given y, in (4.3)
is sufficiently near this solution, then by Lemmas 4.1, 4.2, 4.3 and
Corollary 8.1 with 7", = [@(0)] ™, 2, =0,2 = H, Y = X and H, X and
P given by (4.1) and (4.5) both the weak Newton and weak modified
Newton sequences for z, exist and can be used to obtain this solution.

In addition the weak modified Newton sequence can still be used if we
only have Qe C'[H].

5. A variation of the weak Newton sequence. If [, and P
are given by (4.5) and h, is the »n'™ term in the weak Newton sequ-
ence for h, =0, then by Corollary 3.1 a left inverse for P’(h,) is
given by

r,) =[P (h )1, .

This operator may be difficult to evaluate; we therefore consider the
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following variation of the weak Newton sequence for Problem II.
For @ given by (4.3), assume the following conditions hold:

5.1) (1) QeCX];
' (ii) [Q@)]"'e[X, X] for all ze X .

Inherent in the above assumption is the requirement that a procedure
for evaluating [Q’(x)]™* is known. Let
(5.2) ') = [Q(x)]™" for xe X

and define h, € H and P,: H— X recursively by

h, =0
| rtaqu)
Py(h) = Q(h) — =4———— for heH, and
gnmm
(5.3) ‘
h’n—H = hn - F(hn)Pn(hn) 9

7))
Poh) = Qi) — 22—

: , for n=0,1, ...
[T
Lemma 5.1. If I'(h,) and P,(h,) are given by (5.2) and (5.3),
then I'(h,) is a left inverse for P,(h,).

Proof. The proof of this lemma is the same as the proof of
Lemma 4.2.

THEOREM 5.1. If (5.1) holds and the given y, in (4.3) 1s sufficient-
ly close to a solution of Problem 1, then the sequence {h,}7 given by

(5.3) will converge quadratically to the corresponding solution of
Problem II1.

Proof. The proof of this theorem is essentially the same as the
latter part of the proof of Theorem 3.1.

LEMMA 5.2. For y, used in (4.3) and {h,}; given by (5.3), Problem
I is equivalent to the following problem:
Problem III. Find y,€ K such that the sequence {h,}; converges.

Proof. If y is a solution to Problem I then by Theorem 5.1 we
need only pick y,c K near y. Now assume {h,}; converges to A, then
r't,)P,(h,) — 0 and since I""'(h) = Q'(h) exists we have P,(h,) — 0 or
Q(h) is constant, Also, since H is closed, he H; by Lemma 4,1 y =
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Yo + S h solves Problem 1.

REMARK. We have shown that whenever the sequence {%,}; given
by (5.3) converges, it converges quadratically to a solution of Problem
II and consequently gives a solution to Problem I.

6. The generalized Euler-Lagrange equation. Let X, H, Y, K
and B be given by (4.1). In the calculus of variations one is interest-
ed in finding y € K such that for all z € |a, ]

(6.1) £, @), v'(@) — | Ao, v, v@) = ¢,

where f: B— R!, f; denotes the 4" partial derivative of f and ¢ is an
unknown constant. Historically equation (6.1) has been called the
Euler-Lagrange equation.

For g, h: B— R', we would like to find ye K such that for all
x€la, b]

(6.2) 0(@, y(@), ¥ @) — | b, y(@), ¥ @) = .

We are therefore interested in solving Problem I (4.6) with Q: ¥ — X
given by:

(6.3) Aw)(@) = 9@, y(@), v'(@) — | 1@, v(a), v @) -

Since equation (6.1) is a special case of equation (6.2), we call (6.2)
the generalized Euler-Lagrange equation.

Given f;,¢ X,v=1,2,---,m and j=1,2,.--,5, define the in-
tegral operator L: X — X as follows: for u e X let

n

L@)(@) = 33 ful@) | fuswudy
(6.4) = '

+ fua)| (Fuu@) Fusrurt )y |
THEOREM 6.1. If L s given by (6.4) and )\ is any constant, then
(i) Lel[X, X],
(ii) for all we X the series

Wwll + [INL@) || A+ -ee A (VL) | - e

18 convergent.
Furthermore,
(iii) for all pe X the equation
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(6.5) f=9+ANL(Sf),

has a unique solution in X which can be obtained by iterating (6.5)
beginning with an arbitrary element of X; finally

(6.6) (iv) the operator T = I — AL has a continuous inverse

which can be evaluated by iteration.,

Proof. The proof of (i) is immediate. Since (iii) proceeds direct-
ly from (ii) and (iv) follows from (i) and (iii) we will only prove (ii).

For uwe X let K(u)(x) = Swu Then there exists a constant B such
that for xz € |a, b] ’

| L(u)(x)| < B(K + K*(|w|)z) = Bllu|| (K + K*)(1)(2) .
Assume for 1 <n =<k
6.7 |[L*u)@)| = B"(K+ K)"(|u)z) = B*||u|| (K + K*)*(1)(2) ,

then

| LF(u)(@) | = | L*(L(w)(x) | = BHK + K*)"(] L(u) |)()
= B"U(K + K (| u)@) = B lu || (K + K*)* (1) ()

and by induction (6.7) holds for all n.
If we let M =max(l,|{u||, x| B) and denote K"(1)(xz) by K",

then

n

imﬂwmﬂéiWWKHWéiiMW%
n=0 n=0 =0 ‘7

=0

)K’nﬂ'

(6.8) . ( n
_ m+1 r — a)
B S

where A, = S (™ ,L— 7’) and [xz] denotes the largest integer less than
or equal to x. The first inequality in (6.8) follows from (6.7) and
the second inequality is a direct application of the binomial theorem.
The equality in (6.8) is justified by observing that the coefficients of
K™ for arbitrary but fixed m are of the form Mn»+i+ ? where 7 <

n and n + j = m and also that K™ = (¢ — a)™/m!. It is not difficult
to show that A, satisfies the difference equation A4,., = A, + A4,_,;
consequently the radius of convergence of the last series in (6.8) is
infinite. This proves (ii) and the theorem follows.

LEMMA 6.1. For g, heC'B) let @ be given by (4.3) and (6.3).
If g,he C*(B) then Qe (C™(X), for n=20,1,2,



TO THE EULER-LAGRANGE EQUATION 245

Proof. The proof is straightforward although somewhat lengthy
[6].

If X, K and B are given by (4.1) and y,€ K, then for continuous
g: B— R' define g: X — X as follows:

7w)(@) = o=, va) + | v(t), vile) + v@))
for ye X and z€|a, b].

THEOREM 6.2. For g,h: B— R', if

(@) ¢g,heC*B), and

(b) gs(y) # 0 for ye X
and if Q: X — X is given by (4.3) and (6.3) then

(1) QeCiX],

(ii) [Qw]'elX,X] for all ye X and can be evaluated by
iteration.

Proof. Part (i) follows from Lemma 6.1. A direct calculation
shows that

Q) = 5w + 2|7 - | (Rw7) - [Ty,

for y,7e X. The subscripts on § and % denote partial derivatives.
If we let
1
gy)
Su=F 0 fo=1fu=—Fffu= Ez(?/);fm =1,
Juo=—ffu= Ez(y) and fy = fu =fis =0, then

T() =7+ L) = f-Q W)

where y,7e X and L: X — X is given by (6.4) and (6.9) with n = 2
and T: X — X is given by (6.6) with x =— 1. Given @,ye X cons-
tructing 7 = [Q'(y¥)]'(@) is equivalent to solving

(6.9)

Tm)=fp for nelX,
hence 7 = T~'(fp) and according to Theorem 6.1, » is given by
7 = fp — L(fp) + L*(fp) — L (fp) + --- .

REMARKS. It follows that the theory developed in §1 through
§5 can be used to solve the generalized Euler-Lagrange equation. In
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the calculus of variations condition (b) above is called the strengthened
Legendre condition.
Theorem 6.2 includes the problem of finding y ¢ K such that

(6.10) y"'=h(x,y,y’) where heC*B).
If 9: B— R' is defined by

g(x,y,2) =2, then gyy)=1+0
and g e C*B), therefore Theorem 6.2 holds. Now if

(6.11) Yy — Yk(x, Y, y’) = constant ,

then since two of the three terms in (6.11) are differentiable, the
third must also be, giving (6.10).

The author would like to thank the referee for many helpful com-
ments and suggestions.
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