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The general question concerning the structure of subspaces
of a symmetry class of tensors in which every nonzero element
has an irreducible representation as a sum of decomposable (or
pure) elements of a given length is as yet largely unanswered.
This problem relates to the problem of characterizing the linear
transformations on such a symmetry class which map the set
of tensors of ‘“‘irreducible length>’ k into itself; i.e., preserves
the rank k of the tensors. Another related problem is: “Is
it possible to obtain algebraic relations involving the com-
ponents of a tensor which imply it has rank (‘“Irreducible
length”’) k, for any positive integer k7

This paper is concerned mostly with the third question for the
(Z})-dimensional Grassmann Product Space AU, where U is an #-

dimensional vector space over a field F. It includes some discussion
of the first question for F algebraically closed ﬁld r=2.

A vector in A"U is said to have rank k if it can be expressed
as the sum of &, and not less than k, nonzero pure r-vectors in A"U.
We denote the set of such vectors by Cy(U). The nonzero pure pro-
ducts in A”U have rank one.

The results obtained in this paper are as follows: (i) the rank
of a vector in AU is unchanged if we extend U, (ii) in the Gras-
smann Algebra AU + AU+ -+ + ATU + ---, multiplication of a
Grassmann product by a nonzero vector in U either annihilates it or
preserves its rank, (iii) we can associate with each vector z in Cy(U)
a unique subspace U(z) in U, (iv) if ze Cy(U) and dim U(z) is 7k,
then z has rank &, (®)2, Ay, + -+« + 2, A ¥y, € CHU) if and only if
{®,, ¥, + -, %, ¥,} is independent. Finally, we discuss the rank two sub-
spaces in AU when dim U = 4. If F is algebraically closed, these
subspaces are of dimension one. Otherwise, they can be different,
as the examples show.

In this paper, Q(k, ¢, n) will denote the totality of strictly in-
creasing sequences of %k integers chosen from ¢,t-+1, ---,n; Sk, t, n)
the totality of sequences of k integers chosen from ¢, ¢+ 1, .-+, n.

Let x,---,2, be a basis of U. For w = (1, +-+, 1,) € Q(r, 1, n),
we denote the product »; A --+ A2, by x..

Let p be an r-linear alternating function from =/ E— F, F=
{]_’ cen, n}'

We will need the following known result.

THEOREM 1. (See [2], p. 289-312.) Let
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z =3 p(w)x,, (@eQ(r,1,n)).

Then z 1s a pure vector if and only if

r

(1) Z (—1)ﬂp(ar.7/l)p(.70y "'7j/4—17jﬁ+1y "'yjr) =0

#=o

for all aeS(r —1,1,n) and all (3, +--,7,) €S + 1,1, n).

Furthermore, there are (n — r) independent equations in the
system of equations (1).

The following lemma will be useful.

LemMMA 2. Let z =), p(w)x,, (weQ(r,1,n); 2ze Cy(U)). Let s, m
be integers, 0 <s<r, 0 m < n, and let

z’:Zp(ly "',S,a)xl/\ e A A\ Xy, (QEQ(M—S,S+1,WL)).
Then 2 € Cy(U), for some 1,01 < k.

Proof. We pro& first the case k = 1.
Let w = (4, ---,1%,)€Q(r,1,n). We set

p,(iu ctty 7/7') = p(ily M) /Lr)

if 4,=1,.++,4,=s, and s+1=14,, < -+ <1, <m. Otherwise,
P'(ty, +-+,%,)=0. Then 2’ = >, p'(w)x,;(w € Qr, 1, n)). It is easy to show
that the system of equations (1) holds for the p’s; (there are 3 cases
to check; viz., 1, > m or j, > m for some ¢; not all of the integers
1,..-,8 are present in %, ---, 4,_, or not all of the integers 1, ---,s
are present in j,, ---,J,; and, thirdly, all the integers 1,.-.,s are
present in 4,, +++,%,_, and in j,, +--, 7, with 7, <m (t=1, ---,r — 1)
and j, <m (1 =0, ---,7)). Thus, by Theorem 1, 2z’ € C:(U) or is zero.

For 2=z 4+ +-+ +2,eCy(U),z,cC(U) (i=1,---,k), we apply
the above result to each term z;, noting that

=R+ 7)) =2 e 7

THEOREM 3. Let U C U be a subspace.
Then C(U') < CU).

Proof. Let x, ---, 2, be a basis of U’, and let =, ---, 2z, be an
extension of this basis to a basis of U. Let

Yo+ o0+ Y€ CUU), y;: € CH(U) .
Suppose ¥, + +-- + Yy, =2 + -++ + 2,€ C}(U), 2,€ Ci(U). Clearly
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1<k
To show I =k, let

z; = >, p¥(w)x,, we Q(r, 1, n), 151,

Since y, e Cr(U"),1 <1 <k, then
i‘ p(j)(w) — O
whenever w = (¢, +++, ¢,) and {¢, +--,¢,} £ {1, ---,s}. Hence

Z; = E p(j)((l))xw, wEe Q(Ty 1? 3) ’

is in C7/(U’) by Lemma 2, and since 2]+ «++ + 2, =2, + +++ + 2, =
Yiy =y Yny thelgk-

DEFINITION. For ze Ci(U), we define R,.(z) = k; i.e., R,: N"U—J
such that R,(z) = k if and only if ze Cy(U).

We will drop the index » when no confusion arises.

If xeU,ze AU such that z = 3 p(w)x,, w € Q(r, 1, n), where
X, -+, 2, is a basis of U, then we write x A z for the vector

S p(@r A x,, e Q(r,1,n) .

If z=a, A --- A 2, is a nonzero pure vector in A"U, then we
shall denote the r-dimensional space {x,, ---,2,> by U(z).

THEOREM 4. Let y =y, + -++ + 4, €Cy(U),y; € C;(U),1 < v < k.
(i) Suppose x A (y,+ - +y) =0,2eU. Then xe Uy,
1=1,---, k.
(ii) Suppose xc U,x¢ U(y,) + +-+ + U(yy). Then x N\ye Ci (U).
Proof. (i) Suppose on the contrary that x¢ U(y,). Then
k
ac/\ylzx/\<—géyi)¢0-

Thus, we can choose a basis «,, ---, 2, of U such that
=0, Y =Ty N\ 2o A Dpgy s

Then
k
(=20) = @ A <o A v+ Sp(L, W A X (@ Q= 1,2,m)

Hence (— 3\, 4;) = . + © A v, where v = >} p(1, @®)x, € A"'U. Taking
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s=1, m = n in Lemma 2, it is easy to see that since R(—>),) =
k—1, then ReANv)<k—1. But 2Av=—(y, + -+ + y,) which
implies R(x A v) = k. We have a contradiction. Therefore ¢ U(y,).
Similarly, x € U(y,),t =2, -+, k.

(i) Suppose that

TANY=2--++2ecC*™U),zecC™U), 1<:i<1.

Clearly I < k.
To show I = k, we choose a basis «,, -+, «, of U such that v =
x, and @, «--,x, is a basis of U(y,) + -+- + U(y,). Then

Yy = 2 p(w)xmy ((U € Q(?‘, 2! n)) .

Using (i) and the factthat s A (e Ay) =2, A (2, + --- +2) =0,
we can express each z;, =z, A S pP(w)x,); weQ(r,2,n), 1 <751
Now 25‘:1 p(j)(w) = Oy ((D = (7:17 ) ir)), unless

{/L.],---,'I:r}g{z, "’73}'

In the latter case, Y., »¥(w) = p(w). Therefore, z, 4+ -+ + 2z, =
2+ -+« + 2, =2 Ay where

7 = 3, pW(w)x, A x,, (@eQ(r,2,3s)) .
Hence y =z + .-+ + 2, where 2/ =, p¥(w)x,, (€ Q(r, 2, s)),
which implies R(y) = I, i.e., k< I.

THEOREM 5. Let y,cCi(U),z,€Ci(U), ¢+ =1,---,k) such that
Y+ oo F Yy =2+ o0 1+ 2
Then U(y) + -+ + Uly) = UR) + -+ + Uzy).

Proof. Suppose on the contrary that there exists a vector x¢
U(y, such that x¢ U(z) + -+ + U(z,). Since @ A (y, + -+ + ¥p) =
x A (2 + -+ +2), then

ReA@W+ - +y)=R@AN@+ - +2z)k-1.
But, by Theorem 4 (ii), R(z A (2, + --+ + #)) = k, which is a con-
tradiction.
DEFINITION. Let
2=2 4+ -+ +2,€CU), 2,€C(U), 1=1 .-, k.
Then we define U(z) to be the subspace U(z,) + --- + U(z,).

THEOREM 6. Let z,¢Ci(U), t=1,---,k, and let
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dim[U(z) + <+« + U] =7k .
Then R(z, + -+ + 2,) = k.
Proof. Suppose the Theorem is false. Let k be the smallest
integer for which it fails. Clearly k = 2. Let
2o+ etz =y, + - +y,€Ci(U),y; € C(U) .
Let z€ U(z). Then z¢ U(z,) + --- + U(z,). By the choice of
kyz, + +++ +2,€Ci_(U) .

Hence, by Theorem 4 (ii),
EN@t ) =A@+ s FR)=CA (Y s YD),

and I =% — 1. But we assumed [ < k. Therefore | = k& — 1.
By Theorem 5,

Uz Nz)+ - +UxANz)=Ux Ay)+ -+ + Ux A yiy) -

Hence <2) + U(z) + -+ + Uz) =<y + Uly,) + -+ + Uy,-).
Now let &’ € U(z)), independent of x. Then again

>4 U) + o + Uy =<&> + Ulyy) + +-+ + Uyiy) -
Taking intersections, we obtain
U + «-+ + U) = Uy) + -+ + Uyi) -
By a similar argument,

Vi=U®) + «++ + Uziz) + Uzigy) + <+ + Uz
= U(y1) + oo + UWiy) -

Hence Uy, + -+ + UWi) = N V; = {0}, which is impossible. The
result follows.

THEOREM 7. >, a; A y,€ CXU) if and only if ({2, ¥, * - T, Ys}
is independent.

Proof. If {x,y, -+, 2, vy, is dependent, it is easy to show that
R,z Ny) <s—1. It follows that the condition is necessary.
The converse follows easily from Theorem 6.

COROLLARY 8. Let f= >, Ay, ond dim<z, y, -+, 2, Y,
Ck,k<s. Then R(f) <k — 1.

We shall now direct our attention to the rank 2 subspaces of
NU.
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DEFINITION. A rank 2 subspace H in AU is a subspace whose
nonzero members are in CX(U).

In this paper, we shall restrict our considerations to the case
dim U =4. It is clear from Theorem 7 that CXU) is empty when
dim U < 4.

LemMMA 9. Let feCXU) and let {y,, - -+, y.} be any basis of U(f).
Then f has a representation f =y, AN uw+ v A w, where {u,v, w) =

{Yay Y3y Y-

Proof. Since fe A*<y,, -+, ¥,>, then
f =2 0@y, (@eQ2,1,4)), p(w)ecF,
=y N Qi 0@, 9y;) + > p(@)y. ; (e Q(2,2,4),

which is of the form y, A u + v A w. It follows from Theorem 7
and its corollary, and the fact that R(f) = 2 that

<uy v, w> = <y2, Y3y ’,I/4> .

THEOREM 10. Let dim U =4 and let H be a rank 2 subspace
an ANU. Then dim H = 1, provided F is algebraically closed.

Proof. Let f be a nonzero member of H. Then f has a re-
presentation f = x, A 2, + x; A x, in C3(U). By Theorem 7,

U= U(f):<001,"',.’134>.

If 77 is any other nonzero member of H, then U(f’) = {x,, ---, 2.
By Lemma 9, f' =, Au+ v A w,lu,v, w)=-<a,x,ry. Hence
dim v, w) N <{x;, 2> < 1. Without loss of generality, we shall assume
x; € (v, wy N <{x,, x,). Hence

fr=m, ANu+ x, Aw,lu, w)C{a,, 2z, 2, .
Let w = >, bxy w = S, dx; b;,d, e F. Then for

NeF,z=\f+ f =x A (A2, + b, + by + b2
+ 2, A v, + dox, + doy)

The condition that the vectors
xl! (sz + waZ + b3x3 + b4w4)’ x37 (7\'%4 + deZ + d4x4)

be independent; i.e., R(z) = 2, is equivalent to the condition that the
determinant
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1 0 0 0
Ox+Db, 0 b,
F()"fufz): 0 0 ? ; 0 be

0 d, 0XN-+4d,
nonzero. Now
F()\,, i fz) =N+ K(d4 + bz) + (bzd4 - dzb4) = g()") .

Since u, w' are independent, (b,d, — d,b,) # 0. Hence g(\) is a non-
trivial polynomial in X\, and hence, for some nonzero » in F, g(A) = 0;
i.e., I'(\, fi, ;) = 0. For such a A, R(z) <1. It follows that dim
H=1,

The above theorem is false when F is nonalgebraically closed.
For example, the vectors

f1:x1/\x2+x3/\x4
and
Lo=a A @+ x) + (X — x) A2,

in CXU), where U =<2, +++,2,, dim U = 4, F = Reals, generate a
2-dimensional rank 2 subspace in A2U.

It is interesting to note that if F' (nonalgebraically closed) has
an 1rreductble quadratic polynomial A()), and dim U = 4, then we
can construct 2 independent vectors f;, f; in CXU), which will generate
a 2-dimensional rank 2 subspace in AU, and such that I"(\, £, /) =
h(\) (see Theorem 10). The construction is as follows:

Let dim U =4, U =<, ---,z>. Let h(\) = N\ + ax + a, be ir-
reducible in F'. The companion matrix of A(\) is

0 1 A -1
—ay, —Q, ao)\:+a1

Now
100 O
det (M — B) = 00—l =h(\)#0.
001 0
0a, 0 X+a,

‘Taking this determinant to be I"(\, f,, f) corresponding to z = \f, + f3,
‘where f,, € C{U),ne F, we have

f1:x1/\x2+x3/\w4
fo =2 A (—x) + 25 A (@@, + a.xy) .
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The construction is complete. Thus, for example, if F = Rationals
and A(\) = A? — 2, then
=2, Nw + 2, A2,
and
fo=w A (=) + (=2 A\ 2, ,
and f., f; generate a 2-dimensional rank 2 subspace in A2U.

For the work in this paper, I am greatly indebted to Dr. R.
Westwick for his generous assistance.
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