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Let / be an infinitely divisible characteristic function
whose spectral functions are absolutely continuous functions
with almost everywhere continuous derivatives. Some neces-
sary conditions that / belong to the class Io of the infinitely
divisible characteristic functions without indecomposable
factors have been obtained by Cramέr, Shimizu and the
author and a sufficient condition that / belong to Io has been
given by Ostrovskiy. In the present work, we prove that
the condition of Ostrovskiy is not only a sufficient, but also
a necessary condition that / belong to 70.

Let / be the function of the variable t defined by

logf(t) = Γ [eitu - 1 - itu(l + u'y'jφi^du

( i ) J~~
+ [eitu - 1 - itu(l + v,2)~ι]f{u)du

Jo

where log means the branch of logarithm defined by continuity from

log/(0) = 0 and where φ and ψ are almost everywhere nonnegative

and continuous functions which are defined respectively on ] — oo, 0[

and ]0, +c>o[ and satisfy the condition

l u2φ(u)du + \ u2ψ(u)du < + oo

for any ε > 0. If we let

S x

φ(u)du X < 0 ,

N(x) = - \ ψ(u)du x > 0 ,

then we see that the conditions of the Levy representation theorem

([4], Th. 5.5.2) are satisfied, so that / is an infinitely divisible

characteristic function. In [3], we have proved the following result.

If the two following conditions are satisfied:

(a) φ(u) ^ k a.e. for -c( l +2~n) < u < —c,

(b) ψ(u) :> k a.e. for d < u < d(l + 2~n) ,

where k, c and d are positive constants and n is a positive integer,
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then the function / defined by (1) has an indecomposable factor.
The following theorem completes this result.

THEOREM 1. / /

ψ(u) ^ k a.e. for c < u < c(l + 2~n) and d < u < d(l + 2~n)

where n is a positive integer and k, c and d ^ 2c are positive
constants, then the function f defined by (1) has an indecomposable
factor.

This theorem is an immediate consequence of the

LEMMA. Let f be the characteristic function defined by

logf(t) — \ (eitu — 1 — itu(l + u*)~ι)a(u)du
Jo

where

a(u) = j
10 otherwise

c being a positive constant, λ — 1 + 2~n (n positive integer) and
r ^ 2λ. Then f has an indecomposable factor.

Proof. Let β be the function defined by

O 11 1 \ (A/ \ Λι Ul / \ (A/ <^ i Λi

-ce if 7 < u < δ

0 otherwise

(2 < 7 < δ < 2λ) and α w and βm be the functions defined by

a,(x) = a(x) am(x) — \ am^{x — t)ay{t)dt
J-oo

βJx) — β(χ) βm(x) = \ βm-iix — t)βAt)dt .
J-oo

We prove easily by induction that

(2) βm(x) = am(x) ^ 0 if x ί [Am, Bm]

where Am and Bm are defined by

Am = m + 2~n

Bm = mrX - 2~n .

We prove now that
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(3) lim sup I am(x) - βjpή | = 0 .

Indeed, if ε < 1, we have

I am(x) I <; cm(r\ - I)™-1

I βm(χ) I ̂  c»(r\ - I ) — 1

and from these formulae and from

J-oo

it follows by induction that

I OLJP) - βjp) I ̂  ε(2c)w(rλ - l)m~ι

and this implies (3).
Let now S(am) be the spectrum of am. From the definition of

am1 it follows easily that

S(am) = U [i + (m ~ j)r, (j + (m - i)r)λ] .

This implies that S(αm) is all the interval [m, mrλ] if

m> K=[(r- 1)(2* + 1)]

(here [x] means the integer part of x) and therefore

(4) inf ajx) >0 m, = K + 2, K + 3, .

From (3) and (4), it follows that

(5) βm(x) ^ 0 m = K+ 2, K+ 3, . . , 2ίΓ + 3

if ε is small enough. But, from the definition of /2m, we have for
k < m

so that, from (5)

(6) βm(x) ^0 m^K+2

if ε is small enough.
We consider now βm for m ^ K + 1. βm can be negative only

on intervals of the kind
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I=[j + kr + ly, (j + kr)\ + Iδ]

where j and k are nonnegative integers and I a positive integer
satisfying

j + k + I = m

and on I we have

I βm(x) I ^ εcm(rX - I ) — 1 .

But we have

j + 21 + kr <j + kr + IΎ < (i + A:r)λ + Id < (j" + 21 + kr)\

so that am+ι is positive on I. Therefore, using (3), we have

for x e I if ε is small enough. This implies that

y J ———— 2i U

for any x and therefore from (6)

for any # if ε > 0 is small enough.

Let now g be the function defined by

log g(t) — \ (eitu — 1 — ίtu(l + u2)

Then

g(t) = Γ eitxdG(x)
J-oo

where G is the function

G(x) - β-4χ(α + η) + Γ [ Σ ^ ^
I J-ooLn = l Π

Here χ is the degenerate distribution and λ and r] are defined by

X = Γ β(u)du

- u2)~ιβ(u)du .
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From (7), it follows that g is a characteristic function if ε is small
enough. Since g is not infinitely divisible, from the Khintchine's
theorem ([4], Th. 6.2.2), g has an indecomposable factor and since g
divides /, the lemma is proved.

As consequences of the Theorem 1, we obtain the following
results which are respectively the results of Cramer [1] and Shimizu
[6] quoted in the introduction.

COROLLARY 1. // in an interval [0, r] (r > 0), ψ(u) Ξ> c > 0
almost everywhere, then the function f defined by (1) has an in-
decomposable factor.

COROLLARY 2. 1/ in an interval [r, s] (s > 2r > 0), ψ(u) ^ c > 0
almost everywhere, then the function f defined by (1) has an in-
decomposable factor.

The characterization announced in the introduction is the following.

THEOREM 2. A necessary and sufficient condition that the func-
tion f defined by (1) has no indecomposable factor is the existence
of an r > 0 such that one of the two following conditions is
satisfied:

(a) φ(u) = 0 a.e. ψ(u) = 0 a.e. if u£ [r, 2r]

(b) ψ ( u ) = 0 a . e . φ(u) — 0 a . e . if u £ [ — 2r, —r] .

Proof. The sufficiency is a consequence of the Theorem 1 of
Ostrovskiy [4] (see also [2], Th. 8.2), while the necessity follows
immediately from the preceding theorem and from the Theorem 1 of
[3] stated above.
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