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Let D be a Krull domain and let {X\}\*A be a set of in-
determinates over D. This paper shows that each of three
" rings of formal power series in {Xλ} over D" are also Krull
domains also, some relations between the structure of the
set of minimal prime ideals of D and the set of minimal
prime ideals of these rings of formal power series are esta-
blished.

In considering formal power series in the X/s over D, there are
three rings which arise in the literature and which are of importance.
We denote these here by D[[{xλ}]]19 D[[{Xλ}]]t, and D[[{Xλ}]]z. D[[{Xλ}]l
arises in a way analogous to that of D[{XJ]—namely, £>[[{X;t}]] is
defined to be {JFe.?rD[[F]\j where ^ is the family of all finite
nonempty subsets of A. Z>[[{X }̂]]2 is defined to be

i \fieD[{Xλ}], & = 0 or a form of degree ϊ j ,

where equality, addition, and multiplication are defined on -D[[{α ]̂]2 in
the obvious ways. J5[[{X;}]]2 arises as the completion of D[{X^}] under
the ({X^-adic topology; the topology on D[[{X^]]2 is induced by the
decreasing sequence {A^ of ideals, where A> consists of those formal
power series of order ^ i—that is, those of the form ΣΓ=ΐ/i If ^
is infinite, Aλ properly contains the ideal of D[[{X;}]]2 generated by
{Xλ}. Finally, Z)[[{X^}]]3 is the full ring of formal power series over
D, and is defined as follows (cf. [1, p. 66]): Let N be the set
of nonnegative integers, considered as an additive abelian semi-
group, and let S be the weak direct sum of N with itself | A | times.
S is an additive abelian semigroup with the property that for any
s e S, there are only finitely many pairs (ί, u) of elements of S whose
sum is s. Z)[[{X^}]]3 is defined to be the set of all functions f:S—>
D, where (/ + g)(s) = f(s) + g(s) and where (fg)(s) = Σ*t+m f(t)g(u)
for any s e S, the notation Σt+u=s indicating that the sum is taken
over all ordered pairs (ί, u) of elements of S with sum s. To within
isomorphism we have ^[[{X;}]]! £ J9[[{XA}]]2 c JD[[{XA}]]3, and each of
these containments is proper if and only if A is infinite. Our method
of attack in showing that JD[[{XJ]], , i = 1, 2, 3, is a Krull domain if
D is consists in showing that -D[[{X }̂]]3 is a Krull domain and that
£>[[{^}]]3 Γ\Ki = J5[[{-Xj}]]i for i = 1, 2, where K{ denotes the quotient
field of

The proof that D[[{X^}]]3 is a Krull domain* Using the
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notation of the previous section, we introduce some terminology which
will be helpful in showing that i?[[{^}]]3 is a Krull domain. We think
of the elements of S as |/t [-tuples {nλ}λeA which are finitely nonzero.
For s = {nλ}e S, we define π(s) to be Σ u e A and we denote by Sζ the
set of elements s of S such that π(s) — i; clearly π is a homomorphism
from S onto N. Given a well-ordering on the set A, we well-order
the set S as follows: if s = {mλ} and t = {nλ} are distinct elements of
S, then s < t if π(s) < π(t) or if π(s) = π(t) and mλ < % for the first
λ in yl such that mλ and nλ are unequal. It is clear that this order-
ing on S is compatible with the semigroup operation—that is, s1 < s2

implies that ^ + t < s2 + £ for any £ in 5. Also, £ is cancellative
and st -\- t < s2 + t implies that sί < s2.

If /GD[[{J^}] ] 3 — {0}, we say that / is a form of degree i, where
ieN, provided / vanishes on S — S, ; the order of /, denoted by
<^(/), is defined to be the smallest nonnegative integer t such that
/ does not vanish on St. If έ?(f) — &, then the initial form of f
is defined to be that element fk of Z)[[{X;J]]3 which agrees with / on
Sk and which vanishes on S — Sk.

LEMMA 1.1. Iff,gε D[[{Xλ}]]z - {0}, then
(1) If f+g^O, έ?(f + g)^ min { ^ ( / ) , a?(g)}.
( 2 ) <?(fg) = έ?(f) + έ?(g).
( 3 ) // / and g are forms of degree m and n, respectively, then

fg is a form of degree m + n.
(4) The initial form of fg is the product of the initial forms

of f and of g.

Proof. In a less general context, Lemma 1.1 is a well known
result; we prove only (2) and (3) here.

(2) : We let s be the smallest element of S on which / does not
vanish and we let t be the corresponding element for g. By definition of π
and έ?, π(s) = έ?(f) = i and π(t) = έ?(g) = j. To show that έ?(fg) =
i + j, we prove that (fg)(s + t) Φ 0 and that (fg)(u) = 0 for u < s + t.
The second statement is clear, for if s' + V == u, then either s' < s
or V < t so that f(s') - O o r g(t') - 0 and f{s')g{tf) = 0 in either case.
By similar reasoning, we see that (fg)(s + t) = f(s)g(t) Φ 0. Hence

(3): By (2), έ?(fg) — m 4- n. To see that fg is a form, we
need only observe that fg vanishes on Sk for any k > m + n. Thus
if weSk, then (fg)(w) = Σu+v=wf(u)9('v) a n d f o r e a c h s u c h P a ί r (^, ^)
either π(u) > ?̂  or π(v) > n so that /(w) = 0 or flf(t ) = 0 so that

= o.

LEMMA 1.2. Let K be a field and let {Da} be a family of sub-
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domains of K such that each Da is a Krull domain. Let D = f\a Όa

and suppose that each nonzero element of D is a nonunit in only
finitely many D'as. Then D is a Krull domain.

Proof. For each a we consider a defining family {V{

β

a)} of rank
one discrete valuation rings for Da. If L is the quotient field of D
and Sf = {Vβa) Π L}a,β, £f is a family of discrete valuation rings of
rank g 1, and the intersection of the members of the collections Sf
is D. If d is a nonzero element of JD, then d is a nonunit in only
finitely many D'as, say D α i , * ,Dan. Because Da. is a Krull domain
and {V{βai)} is a defining family for Z)α., d is a nonunit in only finitely
many of the Vβ

aί)'s. Therefore D is a Krull domain and the family
of essential valuations for D is a subfamily of {V(

β

a) Π L}a,β [6, p. 116].

We now give an outline of our proof that i)[[{X^}]]3 is a Krull
domain when D is a Krull domain. Let K be the quotient field of
D and let {Va} be the family of essential valuation rings for D [7,
p. 82]. By a result due to Cashwell and Everett [3] (see also [4]),
J[[{XJ]]3 is a unique factorization domain (UFD), where J is an in-
tegral domain with identity, if and only if J[[Yly •••, Yn]] is a UFD
for any positive integer n. If J is a principal ideal domain, then
J[[Y19 •••, Yn]] is a UFD for any n [2, pp. 42, 100]; in particular,

and Fα[[fe}]]3 are then UFD's for each a. Consequently,
)Λrα is a UFD for any multiplicative system Na in ^[[{X;}]]^

To show that Z>[[{X }̂]]3 is a Krull domain, it will be sufficient, in
view of Lemma 1.2, to show that by appropriate choices of the
multiplicative systems Na, we can express J5[[{X^}]]3 as

where each nonzero element of D[[{Xyϊ}]]3 is a nonunit in only finitely
many (VM^^DNJ^ We define Na as follows:
Na = {fe Va[[{Xx}]]s - {0} \έ?(f) = i and there exists s e Si such that
f(s) is a unit of Va}, and we prove

PROPOSITION 1.3. Na is a multiplicative system in Fα[[{X;J]]3.

(V*[[{xλ}]],)Na n κ[[{xλ}]]3 = va[[{x>}]]9,

so that

- κ[[{xλ}]]d n (ΓL (Vai

Each nonzero element of Z)[[{X^}]]3 is in all but a finite number of

the Na's.
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Before giving the proof of Proposition 1.2, we recall a result
concerning the content of the product of two polynomials. Let J be an
integral domain with identity having quotient field F and for fe F[{Xλ}],
let Af denote the fractional ideal of J generated by the set of coefficients
of /. In order that Afg = AfAg for each pair /, g of elements of
^[{X;}], it is necessary and sufficient that J be a Prϋfer domain1

[5, Th. 1], In particular Afg = AfAg for each /, geF[{Xλ}] if J is
a valuation ring.

Proof of Proposition 1.3. To show that Na is a multiplicative
system, let /, g e Na. Then the initial forms fiy gό of / and g are in
N a . Agd i s t h e i n i t i a l f o r m o f fg a n d έ ? ( f g ) = ί + j = £ ? { f ) + έ ? ( g ) .
Therefore we need only show that (fg)(s) is a unit of Va for some
s e Si+j. The smallest element u of S for which f(u) is a unit in Va

is an element of St and the smallest element v of S for which g{v)
is a unit of Va is an element of Sd. u + v e Si+j and (fg)(u + v) —
Σ*u>+v>=u+vf(u')g(vf) is a unit of Va. For if v! + v' = u + v and if
{ur, vr) Φ {u, v}, then either ur < u or v' < v so that f{v/) or g{v'), and
hence f{u')g(v'), is a nonunit of Va. It follows that (fg)(u + v) is
the unit f(u)g(v) plus a nonunit of F β . Therefore (fg)(u + v) is a
unit of F β , /βf G iVα, and Na is a multiplicative system.

To prove that K[[{xλ}]]9 Π (^[[{^HlsU g ^J[{^}]]., (the opposite
containment is clear), we must show that if fe K[[{Xλ}[]3 — {0} and
if there is an element g of Na such that fg e Va[[{Xλ}]]z, then
/ G ^α[[{-2G}]]s. By induction, it suffices to show that the initial form
ft of / is in Fα[[{XA}]]3. If g5 is the initial form of g, then gό e Nλ

and ftgjf the initial form of fg, is in Fα[[{XJ]]3. We can therefore
assume without loss of generality that / and g are forms of degree
i and j , respectively. Let s e Si. We must show that f(s) e Va. Let
t be an element of S3 such that g(t) is a unit of Va. If s = {mλ} and
if t = {nλ} there are only finitely many elements τ of Λ such that
mτ Φ 0 or nτ Φ 0; let \ u λ2, , Xu be this finite set of elements of Λ,
There are only finitely many elements {kλ} of St such that kz = 0 for
each 2g[λi, •• , λ j ; let these elements be su s2, * ,s p . Also, there
are only finitely many elements {kλ} of S3 such that fez = 0 for each
«ί{λ l f •• , λ j , and we let these elements be tl9ti9

 β ,ί r. If / * is

the polynomial Σ f(sq)X^ X^«, where sq = {n\q)} and if g* =
9 = 1

r »(9) m (9)

Σ ^ ί ) ^ / 1 ## Xiuu> where tq = {m[q)}, then by definition of addition
in S, it is t rue t h a t (fg)({kλ}) is equal to t h e coefficient of Xfci Xty
in /*gf* for any {fĉ } in Si+j such t h a t fc^ = 0 for λ g {λj., •••, λu}.

1 A Prύfer domain is an integral domain with identity in which each nonzero
finitely generated ideal is invertible.
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Therefore, /*</* e Va[Xh, , X,J since fg e Va[[{Xλ}]],. Further, Ag* =
Va since t e {tu , tr} and since g(t) is a unit of F α . Therefore
Af*Ag* = Af* = A/ , £ V«. But /(s) 6 Af* since s e {s19 s2, , sp}. Hence
f(s) e F α and our proof is complete.

Finally, if h is a nonzero element of ^[[X^}]]3 of order i, then
we choose δ e ^ such that h(s) Φ 0. Since {FJ is the family of
essential valuation rings for the Krull domain D, h(s) is a unit in all
but a finite set {Vai, •••, Fβ|β} of the V«s. Hence & is in each JVα

save Nai, •••, JV^.

THEOREM 1.4. If D is a Krull domain, then D[[{Xλ}]]3 is also a
Krull domain.

2* The proofs that ^[[{X;}]]! and JD[[{X ;}]]2 are Krul l domains*
In view of Theorem 1.4, in order to show that D Krull implies that
D[[{X;}]],., i = 1, 2, is Krull, it is sufficient to show that for any in-
tegral domain J with identity, J[[{X;}]]3 Π Kt = /[[{JQ]],-, where K{

denotes the quotient field of J[[{X^}]]i. Thus we need to show that
if fe J[[{Xλ}]], - {0} and if g is a nonzero element of /[[{X;}]]* - {0}
such that fgeJ[[{Xλ}]]i9 then feJ[[{Xλ}]l. We consider first the
case when i = 2. By induction, it suffices to show that the initial
form of / is in J[[{X^}]]2, and since the product of the initial form
of / and the initial form of g is the initial form of fg and is in
J[[{XA}]]2, we need consider only the case when / and g are forms of
degrees i and j , respectively. Since fg and g are in /[[{^^JJg, there
is a finite subset {ku « , λ j of A such that g vanishes on each ele-
ment {nλ} of Sj for which nx Φ 0 for some λ in A — {λJΓ and such
that fg vanishes on each element {mλ} of Si+j for which mλ Φ 0 for
some λ in A — {λfc}?. We observe that this implies that / vanishes
on each element {pλ} of Si such that pλ Φ 0 for some λgjλi, « ,λw},
for if this were not the case, then there would be a smallest element
p = {pλ} of Si with pμ Φ 0 for some μ${\, , λ j for which f(p) Φ 0.
Then if s = {sλ} is the smallest element of Sj for which g(s) Φ 0, we

observe that (/#)(# + s) = ΛP)Q(S) ^ ° a n ( i t h a t P + s = to + sΛ,
where ^ + ŝ  ^ p^ > 0, contrary to the hypothesis on fg. We see
that (fg)(p + a) = f(p)g(s) as follows: If p ' + s' = p + s where p' e S{

and s' 6 Sy, then s' < s implies that g(s') = 0 so that f(p')g{s') = 0.
On the other hand, if s' > s, then pf < p so that f(p') = 0 if p' = {pj}
and p ^ 0, while #(s') = 0 if p^ = 0 since the μ-th coordinate of s'
is then nonzero. Consequently, (fg)(p + s) = f(p)f(s)y and the con-
tradiction which this equality implies shows that it is indeed the case
that f({pχ}) = 0 for each {pλ} in £>< such that pλ Φ 0 for some
λ ί {λi, , λΛ}. Hence fe J[[{X*}]]2 as we wished to show.

Our proof for /[[{X^Hz shows that if the set {λx, « , λ j does
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not depend on i, as is the case if g and fg are in J[[{X;}]]!, then
each form f{ associated with / (that is, / χ{, where χ* is the charac-
teristic function of Si) will also have the property that it vanishes
on each element {sλ} of Si such that sλ Φ 0 for some λ?{λ 1 } •••, λ j .
Consequently, / e JMX?}]]^ We have proved

THEOREM 2.1. If D is a Krnll domain, then D[[{Xλ]\]2 and
D[[{Xλ]Wγ are also Krull domains.

3* Minimal primes of JD[[{-3Γ;}]]3. Our proofs of Lemma 1.2
and Proposition 1.3 show the following, in case D is a Krull domain
with quotient field K. If L is the quotient field of D[[{X;}]]3, then
the set of essential valuation rings for D[[{X^}]]3 is a subset of
{Wσ Π L} U {Wβa) Π L), where {Wσ} is the family of essential valuation
rings for iΓ[[{X^}]]3 and where [PF^} is the family of essential valu-
ation rings for (Vr

α[[{X;}]]3)Λrα; {Va} the family of essential valuation
rings for D. Let Ma be the center of Wσ Π L on D[[{X^}]]3 and let
Mβ

(a) be the center of Wβ

{a) Π L on D[[{Xλ}]l. Since Kcz Wσ, Mσ Π K =

(0); in particular, Mσ Π D — (0). Further, Va is clearly contained in
W{

β

a) Π L so that ^ α ) Π L = F α or l^iα) Π L = K. In the first case
Mι

β

a) f]D = Pa where Va = DPa, and in the second Mβ

(a) OD = (0).

Since D[[{X;}]]3 is a Krull domain, the set of minimal primes of
Z>[[{X;J]]3 is a subset of {Mσ} U {M£a)}. Hence we have proved

LEMMA 3.1. Each minimal prime of D[[Xλ}]]z meets D either in
zero or in minimal prime of D.

Our main purpose in this section is to prove:

THEOREM 3.2. If Pa is a minimal prime of D, there is a unique
minimal prime of -D[[{X }̂]]3 which meets D in Pa.

Our proof of Theorem 3.2 proceeds as follows. Let va be a valu-
ation associated with the valuation ring DPa. We observe that the
function vt defined on D[[{X;}]]3 by v*(f) = min {va(f(s)) \ s e S} induces
a valuation on L, the quotient field of D[[{XA}]]3. To prove this, let
f,geD[[{X2}]]3 and suppose that va{(f + g)(t)) = v*{f + g). Since
va(f(t) + 9(t)) ^ min K ( / ( ί ) ) , va(g(t))} ^ min K ( / ) , v*(g)}, it follows
that v*(f + g) ^ mm{v*(f), v*(g)}. Also, if s is the smallest element
of S such that va(f(s)) = v*(f) and if u is the smallest element of S
such that va{g(u)) = v%(g), then it is straightforward to show that

va((f9)(8 + u)) - va(f(s)) + va(g(u)) = v*(f) + v*(g)

= min {va((fg)(t)) \teS} = v*a{fg) .
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We denote the extension of vj to L by vS also; it is clear that va

and vt have the same value group so that v* is rank one discrete
and is an extension of va to L. The center of v% on J9[[{X,ί}]]3 is the
prime ideal Qa = {f \ f(s) e Pa for each s e S}; we next prove that
(D[[{X^}]]3)ρα is the valuation ring of t J. One containment is clear.
To prove the reverse containment, we show that if /, g e D[[{XJ]]3

and if v*(f) ^ v*(g), then for some ξ in K, f/g = ξf/ξg where
ξfeD[[{Xλ}]]s and ξgeD[[{Xλ}]]s-Qa. This is immediate from the
approximation theorem for Krull domains [2, P. 12], which shows that
there is an element ξ of K such that va(ξ) = — vϊ(g) and such that
vβ(ξ) Ξ> 0 for each essential valuation vβ of D distinct from va. Hence
(D[[{X;}]])ρα is the valuation ring of v%. Before proving Theorem 3.2,
we need to make one final observation: If Pa is finitely generated—
say Pa = (p19 •• ,j>»)—then Qa is the extension of Pa to Z)[[{XJ]]3.
For is feQa, then f(s) can be written in the form *Σii=iai8)Pi ^ o r

some a[s), « ,αi s ) eZ). Hence if ft is the element of D[[{^}]]3 such
that fi(s) = a[s) for each s in S, then / = Σ?=i/<2> a n d / i s i n

extension of P to

Proof of Theorem 3.2. That Qa is a minimal prime of D[[{X;}]]3

lying over Pa in D is clear. If M is any minimal prime of Z)[[{X;}]]3

lying over Pa, then our previous observations show that M must be
of the form M{

β

a\ since only the F ^ ' s meet K in Va. Hence
V£a) 3 (2?i>a[[{^}]]s)^ and MV{

β

a\ the maximal ideal of V{

β

a\ contains
Pa{DPa[[{xl}]l)Na. Now PaDPa is principal so t h a t Qa(DPa[[{Xx}]]s)Na =

. Consequently

α ^ n ΰ[[{x,}]]s s Mvr n

But since ikί is a minimal prime of D[[{X;}]]3, this implies that M =
Qa and our proof is complete.
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