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GRACIANO N. DE OLIVEIRA

Let A = [dij] be an nxn complex matrix and f(X) be a
polynomial with complex coefficients of degree n + k and
leading coefficient ( — T)n+k. In the present paper we solve the
following problem: under what conditions does there exist
an (n + k) x (n + k) complex matrix B of which A is the
submatrix standing in the top left-hand corner and such that
f{λ) is its characteristic polynomial?

In [3] we solved this problem for k = 1. It can be seen that
from our Theorem 2 in [3] the solution of the general case (k > 1)
comes out very easily when A is real symmetric (hermitian) and B
is required to be of the same kind. This last problem had actually
already been solved by Ky Fan and G. Pall (see [1]). Now we will
prove the following

THEOREM. Let A be an nxn complex matrix whose distinct
characteristic roots are w{ (i — 1, , t). Let us suppose that in
the Jordan normal form of A, wζ appears in r* distinct diagonal
blocks of orders v[l\ •• ,i^ ) respectively. Let us assume that
v[i] ^ ^ v™. Let θi = Σ G ^ λ with θi = 0 if r, - k < 1. There
exists an (n + k) x (n + k) complex matrix B having A in the top
left-hand corner and with f(X) as characteristic polynomial if and
only if /(λ) is divisible by Πi=i(w»

First we prove that the condition is necessary. Let T be a
nonsingular matrix that transforms A into its Jordan normal form J:
TAT-1 = J, with J = diag (/,, . . . , Jm). The block J, will be of the
form

0

0 \

and we will suppose that J{ is of type s4 x si# Let

B= A Xί
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where X19 Yly Sλ are blocks of type n x k, k x n9 k x k respectively.
Let us assume that /(λ) = det (B — XEn+k) where En+k denotes the
identity matrix of order n + k. If

we will have

with X = TXί9 Y = Y1T~1 and S = S,. As i Φ j implies w, Φ wd all
we need to prove is that det (B1 — XEn+k) is divisible by (Wi — X)θi

(i — 1, •••, ί). We will do it for (wγ — λ)^1 as the proof is the same
for the other cases. We can assume that wx appears in the first u
diagonal blocks of J and that sx ^ β2 ^ rg su. Let us expand
det (JBL — XEn+k) by Laplace rule in terms of its first ΣίUs* rows.
The necessity of the condition of the theorem will be proved if we
show that all the nonzero minors contained in the first Σ L i ^ rows
have determinants which are divisible by (w1 — λ)^1. These minors are
diag (J, - XE{i\ • • • , / „ - XE{M))(E{ί) denotes the identity matrix of the
same order as J{) and all the minors obtained from this one by replacing
no more than k of its columns by the same number of columns taken
from the matrix which remains after suppressing the last ΣΓ=ίί+i^ί
rows of X. As Ji (i — 1, •••,%) are diagonal matrices with wλ in
the principal diagonal our assertion follows.

Let us now prove that the condition is sufficient. For this we
need an auxiliary proposition.

LEMMA. Let A be an n x n complex matrix whose distinct
characteristic roots are w19 , wt. Let us assume that in the Jordan
normal form of A, Wi (i = 1, , t) appears in r< diagonal blocks of
orders v[l) ^ v[l) ^ ••• ̂  v™. Then it is possible to construct a
matrix Aί of type (n + 1) x (n + 1) containing A in its top left-hand
corner and such that: (a) The characteristic polynomial of A1 is
ΓΠ=i(Wi ~~ ̂ >Yi(p(X)i where σi — Σ J C 1 ^ & ^ <p(X) is any polynomial
in X of degree p = n + 1 — Σ;=iσ;> leading coefficient ( — 1)^ and such
that φ(Wi) Φ 0 (i = 1, , t). (β) In the Jordan normal form of Aλ

the characteristic root w{ appears in exactly r» — 1 diagonal blocks
of orders

υri-l

Proof. We can suppose, without loss of generality, that A is
in its Jordan normal form.
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The matrix Au if it exists, will have the form

Jx 0 ••• 0 X,
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o 0

with Xi = [x[

0 0
•γ- γ

x\.Y and Yt = [yi •

h + l

y].]. The x) and y) must satisfy

where the bih are calculated by a process we give in [3]. Moreover,
we recall that for each i we can give to the x) (j = l, ,Si)
arbitrary nonzero values. Let us suppose that we have fixed all the
matrices X19 , Xm with x) Φ 0 (i = 1, , m j = 1, , s j . We
can assume that ^ appears in the diagonal blocks JUi_l+l1 -, Ju.-ly

Jui (i = ±f . . . 91 t60 = 0, ut = m) of orders sMί_1+1 ^ ^ sMί_i ^ sM/.
respectively. Let us now choose YUi_1+1 = 0, , F^.-i = 0 (ί = 1, , t).
Let

0 0

0 X

0 Jv

We have

det (Ax - - λ)σ^ det (A2 - \E2)

where σζ = ΣjKΐ-i+A a n d ^ i is the identity matrix of the same
order as A3 (j — 1, 2). The matrix diag (JUl, JU2, , /Wi) is obviously
a nonderogatory matrix and so according to the corollary to Theorem
1 in [3] we can choose F t t l , •••, YUt and q such that

det (A2 - XE2) = φ(X) .

With this choice Aγ has the required characteristic polynomial.
Let us find the diagonal blocks of the Jordan normal form of Aγ

corresponding to w{ (i = 1, •••,£). This amounts to finding all the
elementary divisors of A of the form (λ — w^ (ί = 1, •••,£). Let
us consider, for example, the case i = 1 as the other cases can be
treated in the same fashion. Aι can be written in the form
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~ A A

L o A 2 2

where An = diag (J^ , JM_i) and the matrix A22 has not the charac-
teristic root wL. Therefore (see [2], p. 85) the elementary divisors
of Aι of the form (λ — wy are exactly

and the proof of the lemma is concluded.
Let us now complete the proof of the theorem.
Let

= Σ (h = 1, , k - 1 θih = 0 if r. -h<l).

Let

where the <p<, (λ) are polynomials in λ chosen arbitrarily but with the
following properties :

(a) The leading coefficient and the degree of ^ ( λ ) (j = 1, , k — 1)
are such that /3 (λ) has degree ?& + i and leading coefficient ( — l)n+j

(β) For j = l, •••, fc — 1 the roots of ^-(λ) are distinct,
9y(^i) ^ 0 (i = 1, , ί) and if ^ ( f ) = 0 then φj+ι(ς) Φ 0.

Obviously there are infinitely many possibilities of choice for the
^•(λ) (j = 1, . . . , £ ; - 1).

Because of the lemma we can border A with a row (below) and
a column (on the right hand side) to obtain a matrix A1 with
characteristic polynomial /x(λ) and such that in its Jordan normal
form Wi (i = 1, , t) appears in exactly rζ — 1 diagonal blocks
whose orders are v[i], , v(^x. Now we can border Ax with another
row (below) and a column (on the right hand side) in such a way
that we obtain a matrix A2 with /2(λ) as characteristic polynomial
and such that in the Jordan normal form of A2 the characteristic
root Wi (i = 1, , t) appears in exactly Ί\ — 2 diagonal blocks of
orders v[i], , v^U- We can continue in this fashion up to the
matrix AΛ_lβ Using now Theorem 1 of [3] with A/c_1? the proof is
complete.

In an (n + k) x (n + k) matrix any principal minor of type
n x n can be brought to the top left-hand corner by a permutation of
rows and the same permutation of columns. This remark combined with
the Theorem above solves the following problem: under what conditions
does there exist an (n + k) x (n + k) complex matrix B of which A
is the principal minor contained in the rows of orders i19 ,in
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(1 Ŝ ii < < in ^ w + k) and such that /(λ) is its characteristic
polynomial ?
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