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COVERING MANIFOLDS WITH CELLS

R. P. OsBORNE and J. L. STERN

In attempting to triangulate a topological manifold, one
would like to be able to cover a manifold with closed cells
whose intersections are nice. This paper is a study of minimal
coverings of manifolds by open cells and a method of improving
the intersections as the connectivity allows. The principal
theorem is the following,

Theorem 1: If M" is a k-connected topological n-manifold
(without boundary) and ¢ is the minimum of % and » — 3, then
M™ can be covered by p open cells if p(q¢ + 1) > n., Futhermore,
these cells may be chosen so that the intersection of any col-
lection of these cells is (¢ — 1)-connected.

As a consequence of this theorem it is shown that a
contractible open n-manifold (n = 5) is the union of two open
cells whose intersection is a contractible open manifold. One
might note for instance that a 3-connected 10-manifold can be
covered by 3 open cells whose intersections are 2-connected.

1. Definitions and notation. An n-manifold is a connected
separable locally Euclidean metric space. Superscripts will denote
dimension. If K" is an abstract simplicial complex, we denote its
carrier by | K*|. The s-skeleton of K" will be denoted by K°. The
complementary skeleton (sometimes called the dual skeleton) of K
is defined to be the union of all simplexes in the first barycentric
subdivision of K" whose carriers do not intersect | K*|. We denote
the complementary skeleton of K* by K: and note that the dimension
of K: is r —s—1. If ¥ is a homeomorphism of the unit ball in £~
into a manifold, then we denote by | ¥ | the image of ¥ and by |¥|,,
0 = a =<1 the image under ¥ of the ball of radius «a.

2. Covering by cells. In what follows we shall rely heavily on
the topological engulfing of Newman [3].

THEOREM 2.1. Let X be a locally tame closed set of dimension
k< n — 31in a k-connected topological n-manifold M", and let U be a
(k — 1)-connected open set im M" such that X ~ U is compact. Then
there is a homeomorphism h: M™—— M"™ such that X h(U) and
h 1is the identity on the complement of a compact set in M".

Using this engulfing we shall prove

THEOREM 2.2. Let M™ be a k-conmected topological n-manifold
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and let q be the minitmum of k and n — 3, then M" can be covered
by p open m-cells if p(q + 1) > n.

This theorem is proven by induction using the following lemmas.

LEMMA 2.3. Let K be a finite subcomplex of a triangulation T
of E", let U, U' and U" be open sets in E™ such that Uc U'c U"”, no
simplex wm | T| intersects both U and E" ~ U’, no simplex in | T|
wntersects both U’ and E™ ~ U”, and K:c U". Suppose VC E™ is
an open set containing | Ki|. Then there is a homeomorphism h:
E"——E" such that (i) K"Cch(U”)U V, (i) R|(UU|K|U|Ki])=1
and (iii) there is a compact set A C E™ such that h|E" ~A = 1.

LEMMA 2.4. Let M" be a k-conmected n-manifold and let q be
the mintmum of k and n—3. Let |¢|bea cell in M*, 0<a <1 and
| K| an r-dimensional polyhedron in |¢|. Let [T |, |Tsl, +++y | Tml
be n-cells in M™ where m(q + 1) > r, then there exist homeomorphisms
hiyhyy <+« b, of M™ onto itself such that

K Ch(U,) Uy T, U - Uhy| ¥, |
and |V, |, C (| T | iasin)-

Sketch of the proof of Lemma 2.3. There exists a homeomorphism
g of K" onto itself such that g(U"N|K )U(VN|K"])=]|K"| and
g|(K|NnU')=1. (To get g push out linearly from K:. See ([6],
p. 570) for more details on this push.) We extend g by coneing to
get a homeomorphism # of E" onto itself so that % is the identity
on the complement of the union of all n-simplexes in E™ having a
face in | K*| that does not lie in U’. h is the desired homeomorphism.

Proof of Lemma 2.4. Let T be a triangulation of |¢| such that
K" is a subcomplex of 7. We proceed by induction on b = [r/(q + 1)].
If b =0 then » < ¢. Applying the method of Connell [3] we stretch
|, |, over | ¥, | asnm U|K"| keeping |¥,|, fixed. Assume now that
the theorem is true for every 7' such that [»'/(¢ + 1)] < b and suppose
[r/(g +1)] = b and m(q + 1) > r. Let T, be a subdivision of T such
that no simplex of 7T, meets Bd | ¥, |ty and Bd|?, |, or Bd|¥, ]|,
and Bd |7, |(arnm- Let | Ki| be the complex | K™| after subdivision.
Assume |V, |, |¥,], --+, | ¥ .| are given n-cells. As in the case b =0
we can stretch | U], by Ay, over | ¥ |ass U | K7 | keeping | ¥, [
fixed.

By the inductive hypothesis there are homeomorphisms 4, k,, - - -,
by such that | K7 | UrT h(| 5 )) and 2| | @ lparvm =1,1=1,2, -+,
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m —1. We apply Lemma 2.3 to | K| with U= |7,|n|é|, U =
[T ltiasnm N ol U =10, .N|g|land V =U7r7 h( ¥:]), so get the
desired homeomorphism #,,.

Proof of Theorem 2.2. Let |é.[,|d:], --- be a collection of cells
in M~ such that |6 ., |d:ls, -+ covers M™ for some «,0 < a < 1.
(In case M™ is compact, a finite sequence of cells would suffice.)
Choose a sequence («;) of real numbers so that a < a, < @, -+ < 1.
Using Lemma 2.4 we stretch |¢, |, |@:le, *** | &yley OVEr |g,.,| by
hiy+++ hy, sothat [¢;|. Ch;, (| 4;l,) foreach 7 =1,1,...,p. Next we
stretch U2, hi(| ¢ [o) over [@,..la BY Ryigy hoy, + -+, hy . as before. Con-
tinuing indictively we get |@; |, C | @ila, C hishin(| $ila,) -+ Which is
a monotone union of open n-cells. By [1] this union is an open cell
for each 7. Thus we have covered M by open cells.

Note that if M™ were compact, it could be covered by p closed
cells with bicollared boundaries.

3. Improving the intersections of the covering cells, The
following lemmas will enable us to improve the connectivity of the
intersections of the covering cells. In referring to the homotopy
groups we omit reference to the fixed base point even though we do
not assume the sets to be path connected.

LEmmA 3.1, If AcC E™ is compact, U is a neighborhood of A and
byt H(A) — I (U) ts the map induced by inclusion, then 1,(Il,(A)) is
finitely generated.

Proof. Let| K| be a finite polyhedron in £ such that AC|K|C U.
Then II,(] K|) is finitely generated for each k, so factoring the map
1, through 7,(| K|) we see that i,(Il,(4)) is finitely generated.

LeMMA 3.2. Let M™ be a q-connected n manifold (¢ < n — 3) and
let |¥,| and |¥,| be n-cells in M and let 0 < a < B8 <1. Then there
exists a homeomorphism h: M™ — M" such that h||¥ |, =1 and if
TN = (T s 0 [, is the inclusion then

L LV o N ) = LT 0T )
is trivial for k=1,2,--.,q — 1.
Proof. Note that |U71 licarpm N Iifz lws sz 18 @ neighborhood of the
compact set |¥,|,N|¥.|. in |¥|; so, by Lemma 3.1 the image of

A7 N7 in (7 |y N liarsnm) is finitely generated.
Note that the generators can be assumed to be piecewise linear in



204 R. P. OSBORNE AND J, L. STERN

|¥.l;. Since |¥,], is contractible each of these generators bounds a
singular polyhedral cell. Corresponding to the groups

H1(1 wxlaﬂ Iwzla); Ilz(xw‘llam lw‘zla% "'7ﬂq—1(lwxlam lw‘21a)

and the groupoid /1,(|¥.|. N |7,].) we get a finite collection of polyhedrai
singular cells in |¥,|, of dimension less than or equal to ¢. Let P¢
be the union of all these polyhedral singular cells. Using the topological
engulfing we get a homeomorphism ¢g: M — M such that g|| ¥, |jwes =1
and P cg(¥, ;). It is easy to see that

L (g W) NP2l = (g Y1) N T2 5)

is trivial for » = 0,1,2, ..., ¢ — 1.
Using exactly the idea of the proof of the previous lemma, one
can prove the following generalization.

LeMMA 3.3. Let M™ be a q-connected n-manifold (@ < n — 3), let
O<a<B<Yand let |¥, |, --- |V, ]| be n-cells in M". Then there exist
homeomorphisms ¢, «++, 0n_. 0f M" onto itself such that g;||¥;]. =1
and for awy subset k, k,, ---,k, of distinct integers between 1 and
m the map i /(N (1P, [)) — (N 90 (0 &, 1) is trivial, where
1. ts induced by the tnclusion map.

Proof of Theorem 1. Our proof is essentially a refinement of the
proof of Lemma 2.3 interlacing the steps of the proof of 2.3 with
the improvements of the intersection given by Lemma 3.3. Let
[ 6.1, |81, | 85|, -+« be a collection of cells in M* such that U, | é;|.
covers M" for some «,0 < a < 1. Let («;) and (8;) be sequences of
real numbers such that a < a, <8, <a, < B, < -+ and a; <1 for
each 7. As in the proof of Lemma 2.3 we stretch ... |g¢;|, over
i:¢p+1 la by hl,u hz,ly e hp,l so that hml[ I¢z [a = 1.

Next using Lemma 3.3 we get homeomorphisms g,,, 95,1, ***, ¢y, Of
M™ onto itself so that g, ||¢;|,, =1 and for any integers k, k,, ---, k,
between 1 and p,s.: /1, (N, hkt(i P, lal)) — I (M-, gki,lhki,l(l G, 15) is
trivial for 0 < k < ¢g. We continue this process first engulfing |¢,..|.
then improving the intersections. For each 1 =1,2,.-.,p we get an
increasing sequence of open cells | g |o, 9i,/ti,i(| $il5,)s G10Ri085,100(] 65 |s,),

-+, whose direct limit is an open n-cell, call it C;. For any collection
k., k., -+, k., of integers between 1 and p we see, using the fact that
the groups of the intersection i, C,, are the direct limits of

18l () 06 R, (82, 1s) -+« that  I1((YCe) = 0

for £ =0,1,2,+-+,q — 1.
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We should point out that a special case of Theorem 1 was proved
by Zeeman in [6].

COROLLARY 3.4. A contractible open wn-manifold, n <5 1is the
union of two open cells whose intersection is a contractible open
manifold.

Proof. By Theorem 1 we can cover such a manifold by two open
cells C, ahd C, whose intersection is l-connected. Using the Meyer-
Victoris sequence we get the exact sequence

- — H,(C,U Cy) — H(C, 1 C) — H(C) D H(Cy) — - -

But H,. (C,UC,) = H,(C,)) = H,(C,) =0 for every k, so H(C, N C,) = 0.
The Hurewics isomorphism shows I7,(C, N C,) = 0 for each k. This
implies that C, N C, is contractible.

Omne might hope that the groups of the intersections of the covering
cells might be improved to give trivial groups in dimension ¢. The
following example shows that this may not be possible without using
more cells to cover the manifold.

ExampLE., S® x S® can be covered by three open cells whose
intersections are 1-connected. We show that these intersections cannot
be improved to be 2-connected. Suppose, to the contrary that

S*x 8*=C,UC,UC,
and that C,NC,, C,NC, and C,N C, are 2-connected. TUsing the
Meyer-Victoris sequence we get H,(C,U C,) @ H(C,) — H(S* x §% —
H,((C, U Cy) N Cy) and Hy(C,) D Hy(C.)— Hy(C, U C;) — Hy(C, N C,) which
implies H(C, U C,) = 0. Furthermore we get the exact sequence

Hy(C, 1 Cy) @ Hy(C: N Cy) — H((C, U C) N Cy) — H(C, N C. N Cy)

but H(C,NC,) = H,(C,NC,) =0=H(C,NC,N Cy). This implies that
H(C,uCy)ynCy) =0. In the first given exact sequence we have all
groups being trivial except H,(S*® x S°. This contradicts exactness.
Note that if we are willing to use six open cells to cover S® x S* we
can arrange it so that the intersections are open cells.

COROLLARY 3.5. Fwery topological n-mantfold can be covered by
(n + 1) open n-cells.

COROLLARY 3.6. If M™ is a compact manifold (n < 5) that is a
homotopy n-sphere then M™ = S=,

Proof. M" can be covered by two open cells hence M* = S*,
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4. Covering manifolds with boundary with closed cells. Using
the methods of §2 we can get the following theorem.

THEOREM 4.1. If M" is a compact manifold with boundary and
M™ and Bd M" are q connected, ¢ < n — 4 then M"™ can be covered
by p closed cells if p(q + 1) > n.

We note that if A" is the closure of region between two tame
(m — 1) spheres in S” then the annulus conjecture says that A" =
S**' x [0,1]. Note that the annulus conjecture is equivalent with
the assertion that A” can be covered by two closed cells. It is the
stumbling block presented by the annulus conjecture that prevents
us from weakening the hypothesis of Theorem 4.1 to require only
that each component of Bd M™ be g-connected.

5. An eqguivalence for the 3-dimensional Poincare conjecture.
The Poincare conjecture says that a compact n-manifold without
boundary that has the same homotopy groups as a sphere is a sphere.
This conjecture is known to be true for = %= 3,4. We prove the
following:

THEOREM 4.1. The 3-dimensional Poincare conjecture is true if
and only if every contractible open 3-manifold that is l-conmected
at infinity is the union of two open cells.

Proof. According to Wall [5] if the Poincare conjecture is true,
then an open 3-manifold that is 1l-connected at infinity is a compact
manifold minus a point. In the case of a contractible open manifold
that is 1-connected at infinity, the 1-point compactification would be a
homotopy 3-sphere, which again by the Poincare conjecture is a 3-sphere.

Conversely, suppose that each contractible open 3-manifold that
is l-connected at infinity is the union of two open cells. Let S be a
homotopy 3-sphere and p€ S. Then M =S ~ {p} is a contractible open
manifold that is 1l-connected at infinity. By hypothesis M = E, U E,
where E, and E, are open 3-cells. Thus S can be covered by three
open cells, McMillan and Hempel [2] have shown that such a manifold
is a 3-sphere with handles. But the only simply connected 3-sphere
with handles is S°.
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