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This paper is concerned with local integral domains (no
chain condition) which have the following property: for each
ideal S?f Φ 0 of A and for each sequence (an)neN of elements
of M(A)> the maximal ideal of A9 there is an MeN such that
«o <Xi <Zfc e J%f. A local domain with this property is called a
local domain with TTN. These rings are shown to be rings
with Krull dimension 1 and local domains with Krull dimension
1 are shown to be dominated by rank 1 valuation rings.
Modules over these rings are studied and results concerning
divisibility and existence of simple submodules are obtained.

Noetherian integral domains with TTN are studied. Inte-
gral extensions of these rings are also studied. By localization
of previous results, a characterization is given of those integral
domains A with the property that every nonzero torsion A-
module has a simple submodule.

H. Bass in [1] studied rings with the property that the Jacobson
radical was T-nilpotent (T for transίinite), i.e., for each sequence
(an)neN of elements of the Jacobson radical, αoα1 αΛ = O for
some k. Local integral domains with TTN are just local domains
with the property that A/jzf has T-nilpotent radical for each ideal
j / ^ 0 of i .

In this paper A will denote a ring. All rings will be assumed to
be commutative and have an identity. All modules will be unitary.

A will be called a local ring if A has a unique maximal ideal. If
A is a local ring, M(A) will denote its maximal ideal. If B is a local
subring of A, A is said to dominate B if M(A) Π B = M(B). For
convenience we agree that an integral domain is not a field.

If E and F are A-modules, E®F will mean 2£® ΛF.

DEFINITION. An ideal j%f of a ring A will be called topologically
T-nilpotent if for each ideal & of A, & c j y , & Φ 0, and each sequ-
ence (cLi)ieN of elements of j y , there is an n e N with aoaL ane ^ .

DEFINITION. An ideal ssf of a ring A will be called topologically
nilpotent if for each ideal & of A, . ^ C J / , . ^ ^ O , and each
element a of Ssf, an e & for some neN.

It is clear that it suffices to consider ideals έ%? which are nonzero
principal ideals.
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DEFINITION. A local ring A will be said to have TTN (respectively
Krull dimension 1) if M(A) is topologically T-nilpotent (respectively
topologically nilpotent.)

It is clear that "TTN" is stronger than "Krull dim 1".

EXAMPLES. If K is a field, if[[X]], the ring of formal power
series in one indeterminant, is a local domain with TTN. Formal
series in more indeterminants are local domains with neither TTN or
Krull dim 1. More generally, a discrete valuation ring has TTN.

It is easy to see that a local domain has Krull dimension 1 if
and only if it has only one nonzero prime ideal, for if there are prime
ideals &> and &>' with xe^,x$ &*', then zn g &> Π &' Φ 0 for any
n. Conversely, if A is a local domain with only one nonzero prime
ideal, and xeM(A), any ideal & maximal with respect to xn £ &J for
any n is a prime ideal. Hence this definition of Krull dimension 1
and the standard definition agree.

An example of a local domain with Krull dim 1 but not TTN
will be given after the following construction.

Let G be an ordered group, K a field. It is well known that
there is a field F with a valuation v such that v(F — {0}) = G and K
is the residue field; that is, if A is the valuation ring for v, K and
[AJ(M(A)] are isomorphic. (See McLane, [6]). This can be constructed
by letting F be the set of formal power series with coefficients in K
and "exponents" in G; i.e., an element in F looks like Σα6G o,ax

a where
(αff)αeG is a family of elements of K with well-ordered support. Multi-
plication and addition are as power series. The unit is ^ α e G α α a; α

where α0 = 1, aa = 0 if a Φ 0. This same construction can be done
when G is not a group but a submonoid of the positive elements of
an ordered group. One still obtains a local ring with residue field K,
but it is not is general a valuation ring, much less a field. We will
call this ring KG. (For a more detailed explanation, see [6].)

EXAMPLE. Let if be a field, G the set of nonnegative real numbers
under addition. Then KG is a valuation ring with Krull dim 1 but
not TTN.

2. Relationships to valuation rings* The following theorem is
well-known.

THEOREM. Let A be a local domain, K its field of fraction.
Then there is a valuation v on K such that A is dominated by the
valuation ring of v. (See [4], p. 92).
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In this section it is proved that if A is a local domain with Krull
dim 1 the group of values can be picked as a subgroup of the additive
real numbers.

DEFINITION. A subgroup H of an ordered group G is called
isolated if whenever x, y eG, x ^ y ^ 0 and xeH, then y e H.

DEFINITION. An ordered group G is called Archimedean if when-
ever x,y eG and x > 0, y ^ 0 there is a positive integer n such that
nx > y.

It is easily shown that any Archimedean ordered group is order
and group isomorphic to a subgroup of the additive real numbers. (See
[8], p. 45).

A valuation v-.K-^G^ is said to be of rank 1 if v(K — {0}) is
Archimedean.

THEOREM. If a local domain A has Krull dim 1 then there is a
rank 1 valuation w on K, the field of fractions of A, such that A is
dominated by the valuation ring of w. If A also has TTN, there
is an se H, the group of values of w, s > 0, such that w(x) ^ s if
xeM(A).

Proof. A is dominated by a valuation ring V which is a subring
of K. Let G = v(K — {0}) where v: K-^G^ is a valuation on if which
has V as its valuation ring. Consider the set L of isolated proper
subgroups of G. If L is empty we are through. If not, Γ = \JCeL C
is an isolated subgroup of G, for it is easy to see Γ is a subgroup:
and if x e Γ, x ^ 0, then xeC for some CeL. So if y e G, x ^ y > 0,
then yeCsoyeΓ. Γ is also a proper subgroup, for if aeM(A),
a Φ 0, then v(a) g C for any CeL, for if c/de K, c, deA, then v(c/d) =
v(c) — v(d). But an e (c) for some n. Hence v(an) — nv(a) ^ v(c) ̂  0.
So nv(a) Ξ> v(c/d) > 0. If v(a) e C, then nv(a) e C and C is isolated,
so v(c/d) 6 C. But c/d is arbitrary so C — G, a contradiction. Thus
if v(a)$C for any CeL,v(a)ί \JceLC so Γ is a proper subgroup of
G. Thus Γ is a—in fact the only—maximal isolated subgroup of G.
Then G/Γ can be made into an ordered group by setting x + Γ ^y + Γ
in G/Γ if a; Ξ> 2/ in G. It is easily verified that G//1 with this order
is an Archimedean ordered group. If φ: G —> G/Γ is the canonical
surjection, we can extend φ to a map φ^iG^-^iG/Γ)^ by defining
0*(αo) = oo. Then φ* ov: K-^iG/Γ)^ is a valuation on if. Also if
# e i f and v(x) 2> 0, then ^*o^(^) ;> 0. By construction if xeM(A),
v(x) $ Γ so then ^* o !;(&) Φ 0. So ^* o v(x) > 0 if x e M(A). Thus T ,̂
the valuation ring of w = ^* o ^, dominates A.
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If A has TTN, suppose that the elements of the form w(x),
xeM(A), are not bounded away from zero. Then, identifying G/Γ
with a subgroup of R, the additive real numbers, there is a sequence
(<*>»)neπ of elements of M(A) with w(an) ^ 1/2W, and a beM(A) with
w(b) > 2. Then w{a,aι an) = w(a0) + + w(an) < 2. So

do^tta αΛ g (5)

for any integer π, a contradiction. Thus the theorem is proved.

COROLLARY. Γ\neNM(A)n = 0 if A has TTN.

Proof. Let s be as above. Then if x e M(A)n, w(x) ^ ns. No a;
except 0 can satisfy this for all n.

The above theorem shows that a valuation ring has TTN if and
only if it is a discrete valuation ring.

From the proof of the theorem it is not hard to see the following.
Let A be a local domain with Krull dim 1. Let a valuation ring V
have these properties:

(1) V is a subring of K, the field of fractions of A.
(2) V has rank 1.
( 3 ) V dominates A.

Then V is maximal with respect to these conditions. V is not unique
as is shown in § 5.

Many examples are furnished by the following easy proposition.

PROPOSITION. Let V be a rank 1 valuation ring, K its field of
fractions, viK-^R^ the valuation. Let A be a local subring of V
such that there is an s e R, s > 0 such that if xe M(A) v(x) ̂  s. Also
suppose that there is a pe R such that M(A) contains {x e V\ v(x) ^ p}.
Then A has TTN.

Proof. Let (a^)ieN be a sequence of elements of M(A), ae M(A),
a Φ 0. Let n be such that ns > p + v(a). Then v(a0aLa2 an I/a) =
ns — v(a) i> p. So a^axa% an I/a e Λf(A) so α0αLα2 απ e (a).

This proposition does not allow a converse for we have the following
example of a local domain A with TTN, and a rank 1 valuation v on
if, the field of fractions of A, such that there are elements of K of
arbitrarily large valuation which are not in A. Let S — {x e R \ x =
αi/2~ + 6, α, 6 e z and αi/2" + b ̂  T/ | α | + | 6 | + 1} U {0}. Consider
F s = A for F a field. Let K be the field of fractions of A. S is a
submonoid of the nonnegative real numbers under addition. Then A is
a local domain with M{A) being {# e A \ v(x) > 0} where v: K—>R U {^}
is the obvious valuation.

It is easy to see that any n + 1 elements of M{A), ao,a19 an,
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are such that if ai/Ύ + be supp (x), where x = aQat an, then

a-]/ 2 + b > Ί/ \a\ + \b\ + 1 + n. This fact will be used often sub-
sequently without direct reference.

To shoλv that M(A) is topologically T-nilpotent it suffices to show
that if (ai)ieN is a sequence of elements of M(A), b e M{A), b Φ 0, then
for some neN, aoaλ aj)-1 e A, for then aQat an e (b). To do this
we show that for some n, supp {aQaλ anb~ι) c S. Let supp (6) = (di)ieI

where (di)ieI is a well-ordered family of elements of S with d0 as least
element. Then an element in supp (6""1) looks like

•7 _i_ V w (rl ή \
U/Q ~T~ / i 'viKyJi ^*Ό/Σ

iel

where (ni)ieI is a family of positive integers with finite support. If
we can show that there is an me N such that for any sequence
(Wt )ie/ of nonnegative integers of finite support

- d0 + Σ nάdi - d0) + meS ,
iel

we are finished.
Let di = Sii/2 + tζ for each iel. Let M e R be such that if

M1 > M

> 2(| soi/ 2 I + 1101) + W \ s0 \ + 110 \ + 1 .

There are only a finite number elements of S, α / i + 6, with

If α v 7 ^ + δ is such that a\/"2 + 6 - (soτ/"2 + Q > 0 there is an
w e iV, n > 0, such that n{ai/~2 + b - (so-]/Y + ί0)) e S. For if

(α - so)τ/"2" + (6 - ί0) = ε ,

let ^ be such that

v— > V\a- s,\ + \b-t,\ + 1 ^
ε

Notice that if s\/ 2 + t e s there is a p e N such that

si/2" + t - (soi/Y + t0) + p e S .

So there is a g e N such that — d0 + Σ % ( ^ — dQ) + g e S, where the
sum runs over all di with | Si \ + | ^ | < ikf, for there are only a finite
number of these in S and for each one there are only a finite number
of integers q with q(d{ — cZ0) g S. On the other hand, if | s€ | + 11{ \ ^
M, I s, I + I td I ^ M, then (d, - d0) + (dά - d0) e S; for
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so dt + d3- - 2d0

>VM, +VM2 + 2 v / | 8 0 | + I to I + l + 2 ( | s 0 i / 2 I + |ί01)

> V I %i + §,• - 2s01 + I U + tj - 2t01 + 1 .

So for large enough m, Σ«ez w<(d* — d0) — d0 + m e S. So A has T2W.
There are elements in K with arbitrarily large values whose values

are not in S.
It is not hard to see that this is, up to isomorphism, the only

rank 1 valuation on K such that elements of A have nonnegative
order and elements of M(A) have strictly positive order, for if a,
b 6 Z, W]/2 + b > 0, then n{ai/~2 + b)eS for some n e N, n > 0.

Notice that in each example given of a local domain A with TTN,
for each nonzero ideal jzf of A there is an n e N such that M(A)n c j ^ \
Whether this is true in general is doubtful, but at present there are
no examples to the contrary.

3. In this section the relationship of "A has TTN" to divisibility
and other concepts is explored.

DEFINITION. An A-module E is called divisible if for all xeE,
aeA,a^0, there is ay eE such that ay = x.

THEOREM. // A is a local domain with TTN, an A-module E
is divisible if and only if M(A)E — E.

Proof. Suppose M(A)E = E. Let a e A, a Φ 0, x e E. Then A/(a)
has Γ-nilpotent radical M(A)/(a), and M(A)/(a) E/(a)E = E/(a)E. Thus
by Bass [1 p. 473] E/(a)E = 0 or E = (a)E. So for some yeE,x = ay.
So E is divisible. The opposite implication is trivial.

THEOREM. Let A be a local domain such that M(A)E — E
implies E is divisible. Then A has TTN.

Proof. Let aeA, a =£ 0, (a,i)ieI be a sequence of element of M(A).
If ak = 0 for some k aoaL ak = 0 e (a) so suppose no ak — 0.

Consider the submodule E of the field of fractions of A consisting
of fractions which can be written as b\a^aγ an for some b e A, n e N.
M(A)E = E so E is divisible by hypothesis. Thus there is an element
bjaQay an such that a b\a^ an = ao/ao. Then aoaί an =
ab e (a). Thus A has TTN.
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Note that E is in this case equal to the field of fractions of A.

DEFINITION. An A-module E is called torsion free if whenever
aeAyXeE and ax — 0, then a = 0 or x = 0.

DEFINITION. An A-module S is called simple if S Φ 0 and 0 and
S are its only submodules.

It is easy to see that if S is simple, S is isomorphic to A/M for
some maximal ideal M of A. In the local case there is only one simple
module up to isomorphism, A/M(A). In this case it is clear that a
cyclic module is simple if and only if it has annihilator M(A).

PROPOSITION. If A is a local domain with TTN and E an A-
module which is not torsion free, E contains a simple submodule.

Proof. Let x e E, x Φ 0 be such that there is an a e A, a Φ 0 and
ax = 0. Then a e M(A). If bx = 0 for all b e M{A), (x) is simple. If
not let a, e M{A) be such that axx φ 0. If b axx = 0 for all b e M(A)
we are finished. So suppose α2 e M(A) is chosen such that a^x Φ 0.
Having chosen a19 α2, , αΛ such that α ^ αΛ e M(A) and

α» * ̂ 2^i # Φ 0 >

if & is such that b e M(A) and b α,/^..! aγx Φ 0, let α^+1 = 6. But
this process must end, for there is a p such that apap^ aλ e (a) and
ax — 0.

PROPOSITION. Suppose A is a local domain such that every A~
module which is not torsion free contains a simple submodule. Then
A has TTN.

Proof. Let szf be an ideal of A, <s/ Φ 0 and (α, ) ί e ^ a sequence
of elements of M(A). Suppose a<βγa% an g Szf for any n. Let L
be the set of all ideals C of A such that α^c^ anίC for any n.
L is inductively ordered by inclusion for if S is a chain of elements
of L, then (J^e^ C is an element of L. Let ^ be a maximal element
in this set. Then M(A)/& is not torsion free so let T be a submodule
of M(A) containing & such that T\& is a simple submodule of
M(A)/& α^αa ang T for any w e N for if so aϋax αw+1 e ^ ,
for T / ^ is simple so M(A) annihilates it and an+1e M(A). But then
T Φ & and Γ D ^ and TeL which is a contradiction.

PROPOSITION. Let E and F be A-modules, A a local domain with
TTN. If E&) F = 0, then E or F is torsion and E or F is divisible.
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Proof. If neither of them is divisible, then EΦM(A)E, FΦM(A)F

and there is a surjective homomorphism E(g)F—»E/M(A)E(g)F/M(A)F
so E/M(A)E(g)F/M(A)F = 0. But these are A/M(A) modules and
E/M(A)E (g) A F/M(A)F is isomorphic to E/M(A) <g) AlMU) F/M(A)F. (See
[2, p. 123]). But A/M(A) is a field and the tensor product of two
modules over A/M(A) is not 0 unless one of them is 0. Thus either
E or F is divisible. We may as well suppose E is divisible. If E is
not torsion, then E/t(E) is divisible and torsion free and not 0 (where
t(E) is the torsion submodule of E). So E/t(E) is isomorphic to a
direct sum of copies of K, the field of fractions of A (see [6, p. 10]).
But if F is not torsion, F/t(F) is torsion free and not 0. But we
have epimorphism # <g) F — E/t(E)<g)F/t(F). But E/t(E)<g)F/t(F) Φ 0
if E/t(E) is isomorphic to a nontrivial sum of copies of K and F/t(F)
is torsion free and not 0, for if K®F/t(F) = 0, JSΓ® M = 0 for all
submodules Λf of F/t(F) as if is flat (see [2, p. 115]). But F/t(F) is
torsion free and thus has a submodule isomorphic to A and JBΓ® A =£ 0.
So either E or F is torsion.

This unfortunately is not nearly as complete a proposition as
would be desired. The proper conjecture may be: E$$F = 0 if and
only if one is divisible and the other torsion, or one is divisible and
torsion and (supposing E to be the torsion divisible one) F/t(F) is
divisible. One can easily [show that a local domain satisfying this
property has TTN.

REMARK. E. Matlis in [7] proves that if an integral domain A
has the property that its field of fractions K is a countably generated
A-module, then: every divisible A module is the image of a surjective
homomorphism from a direct sum of copies of K; projective dimension
of K — 1; and the torsion submodule of a divisible module is a direct
summand. If A is a local domain with Krull dim 1, its field of fractions
is countably generated by elements of the form (l/an)neN for any
aeM(A), a Φ 0, so these propositions apply.

4* The Noetherian case* If A is a local domain and M(A) is
is finitely generated, the situation is simplified.

PROPOSITION. Let A be a local domain with Krull dimension 1.
Let M(A) be finitely generated. Then:

(a) A has TTN and in fact, if J%? Φ 0 is an ideal of A, there
is an integer n such that M(A)n a

(b) A is Noetherian.

Proof, (a) L e t M(A) b e g e n e r a t e d b y xlf xS9 •••,%. L e t Jzf Φ 0
b e a n ideal of A . L e t p b e s u c h t h a t x\ e j y , ΐ = 1, •••,&. T h e n
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M(A)kp c J ^ , for since any element of M(A) can be written as

αi&i + + axxx

for some a19 α2, , ak, a product of kp elements of M(A) must contain
(xqY for some q. Hence any product of kp elements of M(A) is in j ^ ,
and hence any sum of elements of this type, so M(A)kp c Jzf. Clearly
this implies A has TTN.

(b) Let Szf Φ 0 be an ideal of A. Then M(A)n c j ^ for some
ne N. A/M(A) is a Noetherian A-module, M(A)/M(A)2 is a Noetherian
A-module since it is finitely generated and an A/M(A)-module, hence
a direct sum of simple modules which must be finite since M(A) is
finitely generated. So AjM{Af is Noetherian as 0 —> M(A)/M(A)2 -»
A/M(A)2 —> A/M(A) —> 0 is exact and an extension of a Noetherian
module by a Noetherian module is Noetherian. Continuing by induction,
we see that A/M(A)n is a Noetherian ^.-module for all n. But since
M(A)k c J ^ for some fc, 0 -> M(A)fe — j ^ —> j^/AΓ(A)& — 0 is exact.
j^/M(A)k is finitely generated as it is a submodule of the Noetherian
module A/M(A)k, M(A)k is finitely generated, so S/ is finitely
generated. Therefore every ideal of A is finitely generated so A is
Noetherian.

5* Integral extensions*

DEFINITION. If B is a ring, A a subring of B, xeB is called
integral over A if x satisfies a unitary polynomial with coefficients
in A. B is said to be an integral extension of A if every element
of B is integral over A.

THEOREM. Let A be a local domain with TTN. Let AczKczF
where K is the field of fractions of A and F a field containing K.
Suppose xe F is integral over A. Let x satisfy the unitary polynomial

f = Xn+1 + anX
n + . . . + oo

with coefficients in A. Then if a{ e M(A), i — 0, n, A[x] is a local
domain with TTN.

Proof. A[x] is a local domain, for it is an integral domain and

M = {y e A[x] I y = cQ + c,x + + cnx
n and cQ e M(A)}

is the maximal ideal. To see this, we can suppose / is the unitary
polynomial of least degree with all but the leading coefficient in M(A)
that x satisfies. Then M Φ A[X], for if 1 e M, 1 = cQ + cγx + + cnx

n

with c0 e M(A). 1 — c0 is invertible in A so x is invertible in A[x] and
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x-1 = (Cl + c2x + + cnx
n~λ)(l - Co)-1. Then

χ-\a, + a,x + + anx
n + xn+1) = 0

so αo(Ci. + c2x + + cnx
n~ι)(l — co) - 1 + ax + + £% = 0. But this

produces a unitary polynomial of degree n with all but the leading
coefficient in M(A) which x satisfies, a contradiction. So M Φ A[x].
then let M be a maximal ideal of A[#]. Then iί?Π A is a maximal
ideal of A (see [4, p. 36]). Therefore M f] A = M(A). So

so X W + 1 G M . AS M is maximal, it is prime, so xeM, so I c ΐ . But
M is clearly maximal and hence the only maximal ideal of A[x\.

Now let {fi)ieN be a sequence of elements of Λf(.A[#]) and & an
ideal of A[x], & Φ 0. Then ^ Π A Φ 0 as A[x] is an integral extension
of A, (see [4, p. 14]). Let .^{\A = S$ί. Then j ^ [ x ] c ^ so it
would suffice to prove that for some %/0/i fn e Szf\x\. First notice
that there is an m such that xm

 G JV[X], for if p is such that α/ e
for i = 0 n, let m = p(^ + 1)(^ + 1). Then

x™ = (-(α 0 + a,x + + α%x%)P(u+1) .

When this is expanded, each term will be a product of p(n + 1) factors,
so one of α0, •• ,<x% must be repeated at least p times so xm e j^f[x].
Then if /0/x /„ g s^/\x\ for any w, when each /^ is written as a sum

/ί = ci0 + ĉ α; + + cinx
n

and the products /,/i fn are expanded, there must be an infinite
number of terms cokQxkQ cιk]x

kl cnknx
k» which are not in

But, as before, we can find a sequence of (cik.)ieN such that

is not an element of J^[x\ for any r. But then, as only a finite
number of the k{ could be nonzero (xm e s$f[x]), there is a # e N such
that &r = 0 if r ^ q. Then (c ί + ? 0 ) ί e ^ is a sequence of elements of
M(A) such that c0+g0 ci+g0 ί Szf for any ΐ, a contradiction.

This proof could easily be modified to show that the theorem is still
true if "TTN" is replaced by "Krull dimension 1", in its statement.

The stringent requirements on the polynomial that x must satisfy
in the above theorem are not superfluous, at least to obtain a local
domain; for Z3[}/— 5 ] is not local, as 2 + -]/— 5 and 1 + V — 5 are
neither invertible and cannot be in the same maximal ideal. It is
true however that M(A) generates a topologically T-nilpotent ideal in
A[x] if x is integral over A, the proof being similar to the above.

If A is a discrete valuation ring, A[x] is not necessarily a discrete
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valuation ring, even if x satisfies the type polynomial above, as
ZslSyΊf] shows.

It is not hard to show that an integral extension of a local domain
A with Krull dimension 1, such that each element of the extension
satisfies a unitary polynomial with all but the leading coefficient in
M(A), is a local domain with Krull dim 1. This is not true if "Krull
dimension 1" is replaced by "TTN" for if S = R+ - [0,1], K a field,
R+ the additive nonnegative real numbers, then KR+ is an extension
of the proper type of Ks, but KR+ does not have TTN and Ks does.

Since the integral closure of a local domain is the intersection of
all the valuation rings dominating it and contained in its field of
fractions, (see [4, p. 93]), one might guess that an integrally closed
local domain with TTN is a valuation ring, but this is not true.

EXAMPLE. Let Z x Z be given the product group structure and
be ordered lexicographically. Then Z x Z is an ordered group. Let
SczZ x Z,S = {(x, p) I x = 0, y = 0 or x > 0}. Then A = Ks is a local
subring of F = KzxZ, A is integrally closed in F which is the field of
fractions of A, A has TTN, but is not a valuation ring for F.

Proof. Let w:F-+(Zx Z)^ be the obvious valuation. Let v:
F—*(Z x Z)^ be the valuation v(0) — oo5 v(x) = (α, — b) where w(x) =
(α, 6). Then A = W Γ) V where W is the valuation ring of w, V that
of v. Hence A is integrally closed and it is easily seen that A is not
a valuation ring.

6* Some of the above theorems can be used to obtain character-
izations of those integral domains whose localizations with respect to
maximal ideals have TTN. First an easy internal characterization of
these rings.

PROPOSITION. Let A be an integral domain, M a maximal ideal
of A. Then Am has TTN if and only if for all sequences (ai)ieN of
elements of M and all subideals Stf of My S$f Φ 0, there is a t <£ M
such that t o aQat o oα.e

Proof. Suppose AM has TTN, sf is a subideal of M, s^ Φ 0 and
(a,i)ieN is a sequence of elements of M. Then (aJΪ)ieN is a sequence
of elements of M(AM), J±/ ° AM is a nonzero ideal of AM, so

a0 a1 an

"Ί ϊ Γ
for some n. So ajl ajl ajl = a/t for some αej/, ίgM. So
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aoa1 ant = α, as required. Conversely, suppose the condition is
satisfied and that s$? is an ideal of AM, Ssf Φ 0 and (ai/bi)ieN a sequence
of elements of M(AM). Then (ai)ieN is a sequence of elements of M,
Szf' = j ^ ^ n A is a subideal of M and j y " ^ 0, so there is a £ e A, ί £ M"
such that 0 ^ — ant = ae j / ' . Then αo/6o Λi/&i αw/δ» e - ^

EXAMPLE. Z, the integers is an example of an integral domain
with the property that all its localizations have TTN.

THEOREM. The following are equivalent for an integral domain
A.

( 1 ) AM has TTN for every maximal ideal M of A.
( 2 ) Every A-module which is not torsion free has a simple

submodule.
( 3) An A-module is divisible if an only if ME — E for each

maximal ideal M of A.

Proof. (1) => (2) Let E be an A-module which is not torsion free,
x e E, a e A, ax = 0, a Φ 0, x Φ 0. Let M be a maximal ideal of A
which contains a. Then the map x—>x/l:E—+EM is an injection, for
Ann(x) c M. Then there is a simple A^-module S c 4 f x/1 by a
previous theorem. S is then a simple A-module contained in Ax,
for if s/ae S, s/a = rs/1 where ra + b — 1 for some be M. (2) => (1).
Let E be an A^-module for some maximal ideal M of A, E not a
torsion free A^-module. Then E is not a torsion free A-module, so
E contains a simple A-module which must be isomorphic to Am/M(AM),
hence a simple A^-module. Hence AM has TTN by a previous theorem.
(1) => (3) E is divisible if and only if EM is for each maximal ideal
M of A by [2, p. 111]. If ME = E, M(AM)EM = EM so if AM has
JΓTW £V is divisible. (3) => (1) Let M be a maximal ideal of A, £7
an A^-module such that M{AM)E = E. Then i? is an A-module. If
Mf is a maximal ideal of A distinct from

Thus MZ<7 = E for all maximal ideals M of A. So E is a divisible
A-module and hence a divisible A^-module. Thus by a previous
theorem AM has T7W.

BIBLIOGRAPHY

1. H. Bass, Finitistic dimension and a homological generalization of semi-primary
rings, Trans, Amer, Math, Soc, 95 (1960), 466-488.
2. N. Bourbaki, Algebre Chaptre 2, Fascicule VI number 1236, Paris, Hermann, 1962.
3. , Algebre commutative Chaptre 1 and Chaptre 2, Fascicule XXVII number
1290, Hermann, Paris, 1961.



LOCAL DOMAINS WITH TOPOLOGICALLY Γ-NILPOTENT RADICAL 245

4. , Algebre commutative Chaptre 5 and Chaptre 6, Fascicule XXX number
1308, Hermann, Paris, 1964.
5. I. Kaplansky, Infinite Abelian groups, University of Michigan Press, Ann Arbor,
1954.
6. S. MacLane, The uniqueness of the power series representation of certain fields
with valuations. Ann. of Math. 39 (1938), 370-382.
7. E. Matlis, Divisible modules, Proc. Amer. Math. Soc. 11 (I960), 385-391.
8. 0. Zariski and P. Samuel, Commutative algebra, Volume II, D. Van Nostrand
Company, Inc., Princeton, New Jersey, 1960.

Received October 7, 1968. The major portion of this paper coincides with the
author's dissertation at the University of South Carolina under the direction of Dr.
E. E. Enochs.

UNIVERSITY OF KENTUCKY AND

APPALACHIAN STATE UNIVERSITY





PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN
Stanford University
Stanford, California

RICHARD PIERCE

University of Washington
Seattle, Washington 98105

J. DUGUNDJI
Department of Mathematics
University of Southern California
Los Angeles, California 90007

BASIL GORDON

University of California
Los Angeles, California 90024

E. F. BECKENBACH

ASSOCIATE EDITORS

B. H. NEUMANN F. WOLF K . YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA
CALIFORNIA INSTITUTE OF TECHNOLOGY
UNIVERSITY OF CALIFORNIA
MONTANA STATE UNIVERSITY
UNIVERSITY OF NEVADA
NEW MEXICO STATE UNIVERSITY
OREGON STATE UNIVERSITY
UNIVERSITY OF OREGON
OSAKA UNIVERSITY
UNIVERSITY OF SOUTHERN CALIFORNIA

STANFORD UNIVERSITY
UNIVERSITY OF TOKYO
UNIVERSITY OF UTAH
WASHINGTON STATE UNIVERSITY
UNIVERSITY OF WASHINGTON

* * *
AMERICAN MATHEMATICAL SOCIETY
CHEVRON RESEARCH CORPORATION
TRW SYSTEMS
NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan



Pacific Journal of Mathematics
Vol. 30, No. 1 September, 1969

William Wells Adams, Simultaneous diophantine approximations and cubic
irrationals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Heinz Bauer and Herbert Stanley Bear, Jr., The part metric in convex
sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

L. Carlitz, A note on exponential sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Vasily Cateforis, On regular self-injective rings . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Franz Harpain and Maurice Sion, A representation theorem for measures on

infinite dimensional spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Richard Earl Hodel, Sum theorems for topological spaces . . . . . . . . . . . . . . . . . 59
Carl Groos Jockusch, Jr. and Thomas Graham McLaughlin, Countable

retracing functions and 52
0 predicates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Bjarni Jónsson and George Stephen Monk, Representations of primary
Arguesian lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Virginia E. Walsh Knight, A continuous partial order for Peano
continua . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

Kjeld Laursen, Ideal structure in generalized group algebras . . . . . . . . . . . . . . 155
G. S. Monk, Desargues’ law and the representation of primary lattices . . . . . 175
Hussain Sayid Nur, Singular perturbation of linear partial differential

equation with constant coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
Richard Paul Osborne and J. L. Stern, Covering manifolds with cells . . . . . . . 201
Keith Lowell Phillips and Mitchell Herbert Taibleson, Singular integrals in

several variables over a local field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 209
James Reaves Smith, Local domains with topologically T -nilpotent

radical . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Donald Platte Squier, Elliptic differential equations with discontinuous

coefficients . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 247
Tae-il Suh, Algebras formed by the Zorn vector matrix . . . . . . . . . . . . . . . . . . . . 255
Earl J. Taft, Ideals in admissible algebras . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Jun Tomiyama, On the tensor products of von Neumann algebras . . . . . . . . . . 263
David Bertram Wales, Uniqueness of the graph of a rank three group . . . . . . 271
Charles Robert Warner and Robert James Whitley, A characterization of

regular maximal ideals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Pacific
JournalofM

athem
atics

1969
Vol.30,N

o.1

http://dx.doi.org/10.2140/pjm.1969.30.1
http://dx.doi.org/10.2140/pjm.1969.30.1
http://dx.doi.org/10.2140/pjm.1969.30.15
http://dx.doi.org/10.2140/pjm.1969.30.15
http://dx.doi.org/10.2140/pjm.1969.30.35
http://dx.doi.org/10.2140/pjm.1969.30.39
http://dx.doi.org/10.2140/pjm.1969.30.47
http://dx.doi.org/10.2140/pjm.1969.30.47
http://dx.doi.org/10.2140/pjm.1969.30.59
http://dx.doi.org/10.2140/pjm.1969.30.67
http://dx.doi.org/10.2140/pjm.1969.30.67
http://dx.doi.org/10.2140/pjm.1969.30.95
http://dx.doi.org/10.2140/pjm.1969.30.95
http://dx.doi.org/10.2140/pjm.1969.30.141
http://dx.doi.org/10.2140/pjm.1969.30.141
http://dx.doi.org/10.2140/pjm.1969.30.155
http://dx.doi.org/10.2140/pjm.1969.30.175
http://dx.doi.org/10.2140/pjm.1969.30.187
http://dx.doi.org/10.2140/pjm.1969.30.187
http://dx.doi.org/10.2140/pjm.1969.30.201
http://dx.doi.org/10.2140/pjm.1969.30.209
http://dx.doi.org/10.2140/pjm.1969.30.209
http://dx.doi.org/10.2140/pjm.1969.30.247
http://dx.doi.org/10.2140/pjm.1969.30.247
http://dx.doi.org/10.2140/pjm.1969.30.255
http://dx.doi.org/10.2140/pjm.1969.30.259
http://dx.doi.org/10.2140/pjm.1969.30.263
http://dx.doi.org/10.2140/pjm.1969.30.271
http://dx.doi.org/10.2140/pjm.1969.30.277
http://dx.doi.org/10.2140/pjm.1969.30.277

	
	
	

