Pacific Journal of

Mathematics

ON THE TENSOR PRODUCTS OF VON NEUMANN ALGEBRAS




PACIFIC JOURNAL OF MATHEMATICS
Vol. 30, No. 1, 1969
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Let A and B be C*-algebras and let A &,B be their
C*-tensor product with Turumaru’s a-norm. The author has pre-
viously defined mappings R, A Q. B—B and Ly: AQ,B— A
via bounded linear functionals ¢ on A and ¥ on B, as follows:

B 3 ®bi) =3, < a0 > bi,

=1 =1

L‘p(ﬁm@b) ﬁ;<bi,y>al,
i1 i=1

and has shown how the families {E,| v € A*} and {L,| ¥ € B*}
determine the structure of the tensor product of A and B.
Moreover, in a joint paper with J. Hakeda the author also
proved the existence of these kinds of mappings in tensor
products of von Neumann algebras and gave some of their
applications, Further applications of these mappings are
shown in the present paper.

Theorem 2 says that the product M Q) N has property L if one
of the factors M or N has property L. This answers a question of
Sakai. It ecan be shown that the above families of mappings deter-
mine completely the tensor products of wvon Neumann algebras
(Theorem 3). Theorem 4 shows that if 7z, and 7=, are projection of
norm one from M, and N, to their subalgebras M, and N,, then there
exists, without assuming their o-weak continuity, a projection of norm
one 7w from M, Q Z(K)N . Z(H)Q N, to M,RQ <z (K) N ZF(H)R N,
such that w(a Q b) = 7 (a) R 7,(b), where ac M, and be N,.

We always denote by M & N the tensor product of the von
Neumann algebras M and N and by M Q. N their tensor product as
C *-algebras. M?* means the conjugate space of M and M, the
predual of the von Neumann algebra M.

The following theorem is the basic result cited in the above
introduction; it is a more precise version of Lemma 2.5 of [1]. We
give the proof for the sake of completeness.

THEOREM 1. Let M and N be won Neumann algebras and
M & N their tensor product. Then for each @e M, (resp. ¥ € N,)
there exists a og-weakly continuous mapping R.: M &QQ N — N (resp.
Ly: M@ N-— M) satisfying the following conditions:
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® B (3 ®b) = 3 <a, o> b,

(resp. Lw<éai ® b.;> =3, <by, ¥> a;) .
(2 R(1® a)zx(l Qb)) = aR,(x)b for xe MK N ,
(resp. Ly((a @ D)a(d @ 1)) = aLy(x)b .
3) <z, pQRv> = <R,(x), v> = <Ly(x),p> forxe MQ N .

Moreover, the families of mappings {R,|pe M,} and {Ly|+ € N,}
are total in M Q@ N.

Proof. Let @ @+ be the product functional of @ and + which
is o-weakly continuous in MQQ N. Put f,.(v) =<2,y > for
xreM@N. Then f,, is clearly a bounded linear functional on N,
and as (N,)* = N there exists a element R,(x) in N such that

<2, PR P> = fo,. () = <R,(x), > .

It is an easy verification by this definition that the mapping

R.:xz— R,(x) is a o-weakly continuous linear mapping. Similarly,

we get the mapping Ly and it is easily seen that assertion 3 holds.
Next, take an element Y7 .a; ® b;; then

(R(20®b) v ) = (Fa®bp@v )

:Zn<a/u¢><bw 'l/f> = é<a“@>b“'1/f>

= <g<b"’ > a, q)> = <L¢<ZZ:&@- X b¢>, <P> ’

which implies 1. From these relations, we get
R(1®)3m @l ®b) = RS @ ayid)

= 2<%, p>ayd = a<§]1<x ¢>yi)b = a'Rsv(_lei® yi>b ,
and since R, is o-weakly continuous, R,((1® a)z(1Q b)) = aR,(x)b
for all xe M@ N. The argument for L, goes similarly.

Now, suppose R, (x) =0 for all ¢ in M,, then <z, X y> =
<R (x), > =0 for pe M, and v N,. Hence <z, 31p; Qy;> =
0 where ;e M, and ,eN, (1=1,2,---,m). Since the family
{2 @i | pse My, 4;€ N} is dense in (M@ N), (cf. [13]), we
get ¥ = 0. Similarly the family {Ly | € N,} is also total in M @ N.
This completes the proof.

We notice that the families {R,|pe M, and positive} and
{My |+ € N, and positive} are also total.
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Recall that a factor M (on a separable Hilbert space) has the
property L if there is a sequence {u,} of unitary elements in M such
that o-weak limit %, = 0 and strong- limit w’aw, = a for all ac M.

Sakai proved that if one of the factors M or N is finite and has
property L, then M Q N has property L, and asked whether the
restriction of finiteness could be dropped [4, Th. 6.4 and Remark
6.2]. Here we shall answer this question as an application of the
above mappings.

THEOREM 2. Let M and N be factors and suppose that M or
N has property L; then M Q N has property L.

Proof. Suppose N has property L; then there is a sequence
{#,} of unitary elements in N such that o-weak limitu, =0 and
strong-limit u au, = a for all ae N. Put %, =1Qwu,, then {i,} is
a sequence of unitary elements in M Q N and for ¢ € M, and + € N,

lim, <#,, p @¥> = lim, <1, p><u,,vy> = 0.

Hence, lim, <#,, ™., @ ;> =0 where ;€ M, and ¥y, N, (1 =
1,2, ..., m). Since {#,} is uniformly bounded, this implies o-weak
limit, #, = 0.

Next, take an arbitrary » in M Q N, then for p ¢ M, and € N,
we get by Theorem 1

lim, <#}2f,, p @ v> = lim, <R (#ix¥,), >
= lim, <uiR.(X)U,, p> = <Ry(x), ¥y> = <&, o Q V> .

Hence lim, <#@jei,, X @ vi> = <, 2@ Q>  where
p;e M, and ,eN, (1=1,2,.--,m). Since {#}xi,} is uniformly
bounded, this implies o-weak limit, @}z, = «.

Let @ be a normal positive functional on M @ N, then

<(Wix@, — @) (@ieh, —x), p>
= <@rorew, — wEix*i,x — Ui, + e, p>
= <Arorxi,, o> — <die*u,x, p> — <z Uixi,, p>
+ <xte, p> = <xtr,p> — <ztr,p> — <a'r,p>
+ <z*x,p> =0.
That 1is, strongest-limit, #;xi#, = x. and strong-limit, #;x#, = x for
all rte M@ N. Hence M @ N has property L.
Let M and N act on H and K. Denote by <#(H) the algebra
of all bounded linear operators on a Hilbert space H. Then M Q N

is mnaturally considered as the subalgebra of Z(H)Q Z(K) =
F(HQ® K) and as is easily seen the mappings R, and Ly in M Q N
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are nothing but the restrictions of those mappings Ry (% e <#Z(H),)
and Ly(y € #(K),) in F(H)Q #(K) where $§ and + are exten-
sions of @ and 4. Now the following question naturally arises. Let
2l be a von Neumann algebra on H & K and suppose ¥ satisfies the
following condition: R,() c N for all ¢ € <& (H), and Ly(A)c M for
all y e #(K),, then what is the relation between % and MQ N?
All we know is that 2 is contained in MY F(K)N F(H)RQ N.!
In fact, let x e and take an arbitrary element a e N’ then we get

R, (1 ® a)x) = aR,(x) = By(x)a = Ry(2(1 Q a))

for all pe F(H),. Hence 1 RQa)xr =2(1Ra) and zec (1R N') =
FH(H)RQR N. Similarly ze (M’ Q1) = MK <#(K). Thus

ACMRQF(K)N ZF(H)QN .

Now let us consider the situation described in Theorem 1.
Putting B, () = 1Q R,(x) and Ly(x) Ly(z) Q1 we see that for commuting
subalgebras M&1 and 1 Q N which generate M@ N there are sufficient-
ly many o-weakly continuous M & 1—module (resp. 1 ® N—module)
linear mappings from M Q@ N to M Q1 (resp. 1 ® N) which induce
o-weakly continuous functional on each component algebra. We shall
show that this situation completely determines the tensor product
structure of von Neumann algebras. Namely

THEOREM 3. Let U be a von Neumann algebra and M and N
be subalgebras satisfying the following conditions:

1) A =R(M,N), t.e., M and N generate U,

2) M and N commute with each other,

8) There ts a total family of g-weakly continuous N — module
mappings {R,|aecl} from A to N such that R.(a) =N\l for ac M
where \¢ is a complex number associated with a.

Then A is isomorphic to MK N.

Proof. Take an element >.% a;b, where a,e M and b,e N (i =
1,2, ...,n). We assert that the mapping

is well defined and one-to-one. So, let >~ .a;b, = 0. We may assume that
{b;]t=1,2, ---,n} are linearly independent. Then, from the relation

1 According to the recent result [8] by Tomita about the general standard form
of von Neumann algebras, the commutation theorem in the tensor products of von
Neumann algebras follows as the corollary. Hence Yc M Q N, i.e., MR N is the
largest von Neumann algebra having M and N as its components in H and K. A
similar remark should also be added to Theorem 4.



ON THE TENSOR PRODUCTS OF VON NEUMANN ALGEBRAS 267

R(Zab) SR.(a)b = SNib, = 0,

we get Af, =0 for 1 = 1,2, ---,nand acl. Therefore R,(a;) =0 for
all @ ¢ I and this means that a; = 0 for+=1,2, .-+, nand > a; &b, =
0. Since the fact that >\7..a; ® b, = 0 implie Z%:Lazb, = 0, the above
result shows that @ is a well defined one-to-one mapping. Therefore
the C*-algebra C* (M, N) generated by M and N is isomorphic to
the C*-tensor product of M and N with the compatible C*-norm 8
defined by

(cf. [7] .

= Sa

Next consider the functional <a,p,> =Af on aeM for a
mapping R,. One easily sees that this is a o-weakly continuous
linear functional on M, i.e., ¢, M,. Now, for vre N,, we get

S, ‘Buy) ) = S<Ru(ab), v>
= ZZz‘f<Ra(ai)b¢, y> = §<ai, P> <by, P>
- (Ba@b e @7 ).
Hence for xe C*(M, N)

<R(x), > = <@, ' R(P)> = <P@), pa @ > +++ (¥) .

Therefore if <&(), p, Q> =0 for all ¢, and e N,, then
R (x) =0 for all «el and z = 0. That is, @) = 0. Thus in
M &, N the family of all product functionals ¢ @+ (pe M*, ¢ N¥)
is total, hence the norm A must coincide with Turumaru’s a-norm
and C*(M, N) = M, N. (see [7, Th. 2]).

Let V = Linear span of {'R,(v¥): ael, e N,}. Since {R,|aecl}
is total in A, V is uniformly dense in .. On the other hand,
let V'’ = linear span of {p, Qv |aecl, e N,}, then V' is also
uniformly dense in (M@ N), and by the equality (*) we get
‘OIV' I MR.N] = V|C*M, N) where V| MK, N and V|C*(M, N)
are the restrictions of elements in V' and V to M Q. N and C*(M, N)
respectively. Now by Kaplansky’s density theorem, V and V'’ are
isometric to V|C*(M,N) and V'| M Q. N, so that ‘@ induces the
isometry between V' and V, hence the isometry p between (M & N),
and A,. It is not difficult to see that ‘p is the extended isomorphism
of @ between A and M @ N. This completes the proof.

In the above theorem, the case where 9 is a finite factor is due
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to Nakamura [2] and the case where U is a (general) factor is
proved in Takesaki [6].

Our next result is somewhat different from those treated above
and is included essentially in Lemma 2.3 and in the proof of Theorem
3.2 of the author’s joint work [1] with Hakeda. However, it may
be useful to reformulate these results in the simple form shown
below. We give its proof for completeness.

THEOREM 4. Let M, and N, be von Neumann algebras on H
and K and M, and N, be their von Neumann subalgebras respectively.
Suppose there are projections of norm one w, and 7w, from M, to M,
and from N, to N,. Then there s a projection of norm one

T MLFEKNZGH QN —-MKL.Z(K)N.Z(H)R N,

such that w(a Q) b) = T (a) R 7,(b) where ac M, and be N,.

It is known that in the above case there is a unique projection of
norm one 7,7, from M, Q.N, to M,&,N, such that 7, Q7,(aQb) =
. (a) @ 7, (b), and if w, and 7, are o-weakly continuous it can be also
shown that we can extend the above 7, X 7, to the o-weak continuous
projection of norm one from M, ® N, to M, ® N, which is a posteriori
unique (cf. [10]). However, it is the crucial point of the above
theorem that even if we lack the condition of o-weak continuity of
7w, and 7w, we get still the extension of =, ® =, to the algebra
ML A K)N .z (H)R N,.

Proof of the Theorem. Let {e;|1¢€ I} be the family of orthogonal
minimal projections in <#(K) corresponding to the orthogonal basis
in K. Put ¢,=1Re¢;, ¢, = S,cs6; and &, = 1R e; = >);cs8; Where
J is a finite subset of I. Then

e M KR F(K)e, =M, Qe (Ke, = M, Q6,5 (K)e,

(the last equality holds, since e¢,<#(K)e, is a finite dimensional
algebra). Let m, be the projection of norm one from M, &, ¢,Z (K )e,
to M,RQ.e, 7 (K)e, defined by 7w,(a @b = x(a) Qb where ac M,
and bee,#(K)e, (cf. [10, Th. 1]) and put 7zi(x) = 7,(2,2€,)
for xe M, Q <& (K). Then {7}(x)]|J is a finite subset of I} is a family
of elements in M, ® . (K) bounded by || z]||. Put 7'(x) = Lim, 7} (x)
(operator Banach limit in the sense of Schwartz [5] with respect to
the subsets J). By the property of the operator Banach limit shown

in [5], we have

m(x) e M, Q 2z(K) and {[7'(x) || = [[«]] .
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Moreover, for ve M, R <7 (K), © = o-weak limit, &,2¢, implies

Lim, 7j(x) = Lim, 7,(&,x€,) = Lim, &,x¢,

= o-weak limit ¢,z¢, = .

Therefore ©' is a projection of norm one from M, ® Z(K) to
M, R % (K). Take an element a @ be M, Q <#(K). We have

m(a @ b) = Lim, 7,(a & e,be;) = Lim, 7.(a) R ¢,be,
= o-weak limit; 7.(a) Q e;be;, = 7T (a) R b .

Similarly we get a projection of norm one =* from Z(H)X® N, to
F(H) Q@ N, such that 7*(a ®Q b) = a & m,(b).

Now take an element x € M, R % (K) N Z(H)Q N,. Forarbitrary
ye M @1 we get, by Theorem 1 in Tomiyama [9],

yri(x) = m(yw) = wH(ay) = 7)Yy

because M/ K1 .F(H)Q N, and (M Q1Y = M, R #(K). Hence
T@ye M, Q Z(K)N . (H)Q N,. Therefore, put n(x) = n'z*(x) and
take an element ye 1 N;. Since 1 Q N, M, R £#(K) we get again
by [9, Th. 1]

yr(x) = yr'wi(x) = 7'(yr'(@) = T (@ (@0)y) = 7(@)y .

Thus wx)e M,Q Z(K)N F(H)RQ N, and it is clear that this
mapping 7 is a projection of norm one from M, R Z(K) N Z(H)XRQ N,
to M, Q® F(K)N.#(H)Q N, Finally for a @ be M, Q N, we have

m(a @ b) = T (a Q b) = T(a Q T:(b)) = m(a) Q Ty (b) .
This completes the proof.
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