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In a recent paper by the second author a construction was
given which was shown to coincide with the lower radical in
all associative rings. In the present paper this construction
is considered in various classes of not necessarily associative
rings. It is shown that while the construction still defines a
radical, it will in general properly contain the lower radical.
More precisely, it is shown that the radical constructed coincides
with the lower radical if the semisimple class of the lower
radical is hereditary (or, equivalently, if the radical of a ring
always contains the radicals of all its ideals).

From this condition it follows that the construction coincides with
the lower radical in all associative and alternative rings, but an
example is given which shows that this is not true in general. We
conclude by showing that an apparently quite different construction
due to J. F. Watters [5] yields exactly the same class of rings.

We will assume that all rings considered in this paper are from
some universal class <%/ of not necessarily associative rings. We will
use the following construction, which is equivalent to that of [4].
Let j y be an arbitrary class of rings and J ^ o its homomorphic closure.
Then define J K = {Rz^\R has a nonzero ideal i e j ^ _ J , and Aω —
\Jn JK. Then define %/(Sf) = {R e ^ \ R/Ie JK for all ideals I of R}.
It is clear from this definition that we have

LEMMA 1.

LEMMA 2. j ^ £ ^ implies

It is also easy to check that the proof of [4, Th. 1] makes no
use of associativity. Thus we may state

THEOREM 1. ^(Stf) is a radical class.

We will replace [4, Th. 2] by the following generalization:

THEOREM 2. If ^ is a radical sub-class of ^ , then & =
if either of the following two equivalent conditions is satisfied:

( i ) The semisimple class S^ of 0* is hereditary,
(ii) Writing &»(R) for the ^-radical of R, then
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for every ideal I of every Re^/.

Proof. The equivalence of (i) and (ii) follows from [1, Lemma 2,
p. 595]. Thus assume that && is hereditary. By Lemma 1 we have
& £ W{^) and suppose there could exist Re %<(&*), R £ &. Then
R has a nonzero homomorphic image in 6^^, so (without loss of
generality) assume Re &(0*) Π &&. Thus Re^n for some n, and
since & (Ί S?& = 0 it is clear that n ^ 1. Let m be the smallest
integer such that there exists a nonzero R e &>m Π 6^^. Then R has
a nonzero ideal Ie^m_γ. Since £^^ is hereditary leSf.ζ? contrary
to the minimality of m. Thus &

COROLLARY 1. If & is a radical class then in any associative
or alternative ring the ^-radical and the ^/(^)-radical coincide.

Proof. This is clear since the intersection of & with any universal
associative or alternative class is again a radical class and semisimple
classes are always hereditary in associative [2, Corollary 2, p. 125] or
alternative classes [1, Corollary 2, p. 602].

Note that a sufficient condition for property (ii) is that έ^(I)
shall be an ideal of R. This is already known to be true in associative
rings [2, Th. 47, p. 124] or alternative rings [1, Th. 2, p. 600]. From
this last remark it also follows that the proof of [4, Th. 2] could
have been applied equally well to alternative rings.

THEOREM 3. Let £s?(Stf) be the lower radical for an arbitrary
class Ssf. Then S?{Sz?) = r^{^f) if S^^f{S^f) is hereditary.

Proof. Suppose S^f(J^) is hereditary. From Lemma 1 and the
minimality of <2f{s$f) among radical classes containing szf [2, Lemma
5, p. 13] it follows that £?{jχr) S ^(^f). But by Lemma 2, sf^^ίSzf)
implies g^(J^) S &(£f(J&)). Then if S^(ssf) is hereditary if follows
from Theorem 2 that %s(£f{J*f)) = ^(Szf) and so ̂ (s$?) = g^(j^).

We can thus conclude that the ^(j^)-radical coincides with the
lower radical in any associative or alternative ring.

Note. The class ^ of all idempotent rings is a radical class
whose semisimple class is nonhereditary [3, Th. 2, p. 1116]. It is also
true that %/(^) = ̂  for if R $ ̂  then since all subrings of R/R2

are zero rings, R/R2 has no accessible subrings in Jf Thus R g ^/{^)
and so ^/{^) — ̂ J\ This example shows that the conditions of
Theorems 2 and 3 are not necessary.

Also remark that there are classes j y for which &(£/) is not
the lower radical. One example is the class & = i^(^r) where %*
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is the class of all zero rings. Let R be the ring constructed [see 3]
over Zz in symbols u,v,w satisfying relations u2 = w2 = 0, uv = vu —
uw = u, and wu = vw = wv = v2 = v. The only ideal of R is H —
{0,u,v,u + v} for which H2 = H. Now ^ is a hereditary class
so by a result of A.E. Hoffman [see 6, Theorem 1,] we have
^ Π &{%) = 0. Now the lower radical of a hereditary class is
hereditary. Thus £f(%T) is hereditary and so Rg^f(^). On the
other hand, R/He ^ and R has the accessible subring J — {0, u) e 5Γ.
Hence Re &(%*).

It should also be noted that while ^{s/) need not equal
it is nevertheless true for all classes Jϊf that
This is an easy consequence of the fact that

In a paper [5] which is soon to appear the following construction
is given: Let ^/έ be an arbitrary homomorphically closed subclass
of some universal class ^ . For β e ^ define Mσ0 = 0, and for an
arbitrary ordinal a Mσa=\Jβ<aMσβ, if a is a limit ordinal, or
Mσa/Mσβ is the ideal of R/Mσβ generated by all accessible ^f-subrings
of R/Mσβ, whenever a — β + 1. If 7 is the ordinal for which Mσγ =
Mσr+1, write Mσ(R) = Mσ, and let ^T^ - {i2e ^ | Mσ(J?) = R}.

THEOREM 4. ^ ^ = g/(^r).

Proo/. Let iί be a ring for which Mσ(i?) = R, and let / ^ R be
an ideal of R. Then 0 — Λίσ0S J, and there must exist some ordinal
a such that Λf^Sl but Mσa+1ξ£I. Write A = Mσai B = Mσa+ί. Since
/ is an ideal of R, it follows from the definition that B/A contains
an accessible ^Γ-subring W/A of R/A such that W£I. Then the
natural homomorphism R/A—+R/Igives W/A-* W with W accessible.
Thus since ^ is homomorphically closed, we have a nonzero W e Λί.
It follows that J S / J G ^ C for some n and since I was arbitrary,
i2 € 3^(^r). Thus ^ C ' S ^(^/T).

The converse is clear, for suppose R e ^/{^t) and I = 71̂ (72) =
Λfσr(i2). If IΦR, it follows that β/I has an accessible ^^-subring,
contradicting Mffr(i2) = Mffr+1(2e). Thus Mσ(R) = R whence i2 e ΛTa' and
so ^ C ' = g^(^T).
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