Pacific Journal of

Mathematics

A NONIMBEDDING THEOREM OF ASSOCIATIVE ALGEBRAS

ERNEST LESTER STITZINGER




PACIFIC JOURNAL OF MATHEMATICS
Vol. 30, No. 2, 1969

A NONIMBEDDING THEOREM OF
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Let A and B be associative algebras and define the Frattini
subalgebra of A, ¢(A), to be the intersection of all maximal
subalgebras of A if maximal subalgebras of A exist and as
A otherwise. Conditions on B will be found such that B cannot
be an ideal of A contained in ¢(A).

Hobby in [2] has shown that a nonabelian group G cannot be the
Frattini subgroup of any p-group if the center of G is cyclic. Chao
in [1] has shown that a nonabelian Lie algebra L can not be the
Frattini subalgebra of any nilpotent Lie algebra if the center of L is
one dimensional. In this note, we find a similiar result in the theory
of associative algebras. However, in this case, it is not necessary to
place any restrictions on the containing algebra.

Let A be an associative algebra over a field F' and let B be an
ideal of A. If xe A, then x induces an endomorphism of the additive
group of B by L,(b) = xb for all be B. Let E(B, A) be the collection
of all endomorphisms of this type. Then E(B, A) is a subspace of
the vector space of all linear transformations from B into B and is
an associative algebra under the compositions L, + L, = L,.,, aL, =
L, and L.L,=L,, for all x,yc A and all a«c F. Clearly E(B, B) is
an ideal of E(B, A). If C is an ideal of A contained in B, then let
EB, A,C) ={EecEB, A); E(¢) = 0 for all ceC}. Then E(B, 4, C) is
an ideal of E(B, A) and E(B, A)/E(B, A, C) is isomorphic to E(C, A).
Note that the mapping from A onto E(B, A) which assigns to each
ac A the element L, is an algebra homomorphism. We define the
right annihilating series of B inductively. Let »(B) = {ceB;bc =0
for all be B} and let »;(B) be the ideal of B such that »;(B)/r;_.(B)
r.(B/r;_(B)) for j >1. Since B is an ideal in A4, r/(B) is an ideal in
A for all 7.

The following lemma is immediate.

LEMMA. If A and A’ are associative algebras and w is a homo-
morphism from A onto A’, then w(¢(A)) C ¢(w(A)). Furthermore, if
the kernel of w is contained in ¢(A), then w(¢(4)) = ¢(w(4)).

THEOREM. Let B be an associative algebra such that dim 7, (B) =
1 and dimr.(B) =k where 1 <k < . Then B cannot be an ideal
contained 1n the Frattini subalgebra of any associative algebra.
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Proof. Suppose that to the contrary B is an ideal contained in
the Frattini subalgebra of the associative algebra A. Then

E(B, B) < ¢(E(B, 4)) .

For if T is the mapping from A onto E(B, A) defined by T(a) = L,
for all a e A, then, by the lemma,

E(B, B)= T(B) < T($(4)) < 6(T(A)) = ¢(E(B, 4)) .

Let 2, -+, 2, be a basis for r,(B) such that z, is a basis 7,(B).
For notational convenience, let », = r(B) for all 4. Let © be the
natural homomorphism from E(B, A) onto E(r,, A). Since

E(B, B) + E(B, A, 1,)/E(B, A, 1) = E(B, B)/E(B, A, r,) N E(B, B)
= E(B’ B)/E(B’ B: 7'2) = E(sz B)

it follows that
E(r,, B) = n(E(B, B)) © n(¢(E(B, A))) S ¢(E(r,, A)) .

We now show that E(r,, B) & ¢(E(r,, A)) by showing that E(r,, B)
is complemented in E(r,, A). Fori =1, ...,k — 1, define linear trans-
formations e¢; from 7, onto r, by

szzk fOI' j:].,"',k'—l

“@) =10 for 5=k

where §;; is the Kronecker delta. Let S = ((e, +--, ;). We claim
that S = E(r,, B). Since r, = ((?;,)) and B.r,Cr, E(r,, B)< S. To
show that S = E(r,, B), we shall show that dim E(r,,B) =k — 1 =
dim S. For each xe B, L, induces a linear transformation from v,
into 7, = F, where F is the ground field. Therefore, we may consider
each L,,xe B as a linear functional on »,. That is, E(r,, B) C (ry)*
where (r,)* is the dual space of r,. Consequently, dim E(r,, B) = dim
r, — dim f where r? = {z e ry; L,(2) = 0 for all xe B}. Clearly 7 = »,
Then, since dim», = &k and dims, = 1,dim E(r,, By=k —1 and S =
E(r,, B).
We now show that S is complemented in E(r,, A). Let

M:{EG E('}"Z, A); E(zq') = 2’;;% )\:ijzj', )\:@JEF, ?: = 1, ey, k - l

and E(z,) = M2, M€ F}. M is clearly a subalgebra of E(r,, A) and
MnS=0. Weclaim that M + S = E(r,, A). Let E € E(r,, A). Then
E(z) = Szingz; + Mprp for t =1, <<+, k — 1 and E(z,) = M2, How-
ever E=F — 3t nge + Diin,e; where E — Siin,.e;e M and
Skinge; € S. Therefore M + S = E(r,, A). We claim that M = 0.
If M =0, then E(r, A) = E(r,, B) which contradicts
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E(ry, B) < ¢(E(r,, A)) C E(r; A) .

Consequently, S is complemented in E(r,, A), contradicting Sc
#(E(r,, A)). This contradiction establishes the result.

COROLLARY. Let B be a finite dimensional nontrivial nilpotent
associative algebra with dim r(B) = 1. Then B cannot be an ideal
contained in the Frattint subalgebra of any associative algebra.
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