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This paper applies a certain method of iteration, of the
mean value type introduced by W. R. Mann, to obtain two
theorems on the approximation of a fixed point of a mapping
of a Banach space into itself which is nonexpansive (i.e., a
mapping which satisfies 11 Tx — Ty \ | ^ 11 x — y | | for each x and

y\
The first theorem obtains convergence of the iterates to a

fixed point of a nonexpansive mapping which maps a compact
convex subset of a rotund Banach space into itself.

The second theorem obtains convergence to a fixed point
provided that the Banach space is uniformly convex and the
iterating transformation is nonexpansive, maps a closed bound-
ed convex subset of the space into itself, and satisfies a
certain restriction on the distance between any point and its
image.

We note that a rotation T about zero of the closed unit disc in

the complex plane satisfies the conditions of Theorems 1 and 2, but

the usual sequence {Tnx} of iterates of x does not converge unless x

is zero.

DEFINITIONS. If Y is a Banach space, T is a mapping from Y

into itself, and xe Y, then M(x, T) is the sequence {vn} defined by

vx = x and vn+1 = {Ij2){vn + Tvn).

Following Wilansky [3, pp. 107-111], we say that a Banach space

Y i s rotund p r o v i d e d t h a t i f w e Y, y e Y, w Φ y , a n d \\w\\ = \\y\\ <ί 1 ,

t h e n (1/2) || w + y\\<l.

THEOREM 1. Let Y be a rotund Banach space, E be a compact

convex subset of Y, and T be a nonexpansive mapping which maps

E into itself. If xe E then M(x, T) converges to a fixed point of T.

Proof. If, for some n,vn= Tvn, then clearly M(x, T) converges

to vn.

Hence suppose that vn Φ Tvn, for each n. Let z be a fixed point

of T. Then {11^ — 1̂1} is decreasing, for since Y is rotund and

\\Tvn~z\\ - \\Tvn- Tz\\^\\vn~z\\ ,

we have that

II vn+1 - z || = λ.(vn + Tvn) - z || < || vn - z || .
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Suppose t h a t limw \\vn — z\\ = b > 0. Let y be a cluster value
of {vn}. Then clearly b = \\y — z\\.

Suppose first t h a t y = Ty. Then for each n,

\\Tvn-y\\ = \ \ T v n - Ty\\^\\vn-y\\ .

Since we have assumed that vn Φ Tvn for each n, we have by the
rotundity of Y that

\vn+ι - ±(vn + Tvn) - y <\\vn-y\

Thus {\\vn — y\\} is decreasing, and since y is a cluster value of {vn}f

M(x, T) converges to y.
Now suppose that y Φ Ty. Let d denote b - || (l/2)(y + 2ty) - z | | .

Then d > 0, since F is rotund, for

| | Γ l / - ί s | | = || Ty - Tz\\ ^ \\y - z\\ = b .

Let n be such t h a t ||^/ — vn\\ < d. Then since T is nonexpansive,

-±-(2/ + Ty) - vn+1 -(y +

±-\\Ty- Tvn

-(vn

- vn
<d .

Hence

\\vΛ+ι-z\\ ^ \\vn+1-±(y+ Ty)
11 Δ

<d + (b - d) = b ,

±-(y +Ty)-z
Δ

a contradiction. Therefore b = limw \\vn — z\\ = 0, so that M(x, T)
converges to z.

F. E. Browder [1] has shown that each nonexpansive mapping
which maps a closed bounded convex subset E of a uniformly convex
Bananch space into itself has a fixed point in E.

If such a mapping satisfies one additional requirement, we may
approximate one of its fixed points using M(x, T):

THEOREM 2. Let Y be a uniformly convex Banach space, E be
a closed bounded convex subset of Y, and let T be a nonexpansive
mapping which maps E into itself. Let F denote the set of fixed
point of T in E, and suppose that there is a number c in (0, 1)
such that if x e E, then
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\\x - Tx\\ ^ cd(x,F) ,

where d(x, F) denotes sup z e i , \\x — z\\.

If xeE then M(x, T) converges to a fixed point of T.

Proof. The theorem is trivial if xeF. Suppose t h a t xeE — F

and t h a t M(x, T) does not converge to a member of F. Then vn g F

for each n. Since Y is uniformly convex, we have as in the proof

of Theorem 1 t h a t if zeF then {\\vn — z\\) is decreasing.

Suppose t h a t b — limπ d(vn, F) > 0. Since Y" is uniformly convex,

there is an r in (0, 2b) such t h a t , for w, y, and z in Y, t h e relations

- 2 || ^ | |?/ - z\\ ̂  26 a n d

imply that

— (w + y) - z - z\\ - r .

There is a positive integer n and a member 2 of F such t h a t

so that since

and

we have that

\v,-z\\<b + -L,

Tvn - z II = II Tvn - Tz\\ ̂  \\vn - z\\ < 2b

z = -(vn + Tvn) - z

<*\\vn — z \ — r < b + — — r <o ,
- II n I 2

an contradiction. Hence limn d(vn9 F) = 0.

We now need the following:

LEMMA. If S > 0, ze F, and r > 0 such that for some n, vn is

in the open sphere S(z, r) with center z and radius r, then there

exist t in (0, s), w in F, and an m such that the closed sphere S(w, t)

lies in S(z, r), and for each p, vm+p e S(w, t).

Proof. Reca l l t h a t [\\vp — z\\] is d e c r e a s i n g a n d t h a t w e a r e s u p -

p o s i n g t h a t {vp} does n o t c o n v e r g e t o z. L e t a = \imp\\vp — z\\.
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Then 0 < a < r. Let t = (1/3) min {r - a, s}.
Since linij, \\vp — z\\ = a, lim^ d(vp, F) = 0, and vpgF for each p,

there exist w in F and an m such t h a t 11 vm — z \ | < a + t and

| | ^m - W || < t.

Since weF, \\vm+p — w\\ decreases as p increases, so t h a t
vm+p e S(w, t) for each p. Also, if yeS(w,t), then yeS(z,r), for

\\y - z\\ ^ \\y - w\\ + \\w - vm\\ + \\vm - z\\

<t + t + (a + t)

r — a\ ,
a = r .

The lemma guarantees the existence of a sequence fe} in JF, a
sequence {ίj of positive numbers with limit 0, and a subsequence {vn}
of {v%} such that for each ί and each p,

S(zi+1, ti+1) lies in S(zi9 U)

and

vn.+p e S(zi9 U) .

By the Cantor Intersection Theorem, ΠΓ=i S(zif t{) contains exactly one
point, say w. Clearly {z{} converges to w and w e F. Further,
{\\vn — w\\) is decreasing and {vn) converges to w, so that {vn} con-
verges to w. Thus we have contradicted our assumption that M(x, T)
does not converge to a member of F.
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