Pacific Journal of Mathematics

POLYHEDRON INEQUALITY AND STRICT CONVEXITY

BHALCHANDRA B. PHADKE

Vol. 30, No. 3

November 1969

POLYHEDRON INEQUALITY AND STRICT CONVEXITY

B. B. PHADKE

This paper considers convexity of functions defined on the "Grassmann cone" of simple r-vectors. It is proved that the strict polyhedron inequality does not imply strict convexity.

H. Busemann, in conjunction with others, (see [3]), has considered the problem of giving a suitable definition of the convexity of functions defined on nonconvex sets. An examination of various methods of defining convexity on the "Grassmann cone" (see [1]) is found in [2]. The most important open problems (see [3]) are whether weak convexity implies the area minimizing property (also called the polyhedron inequality) and whether the latter implies convexity. A modest result in this direction is proved below, namely, the strict area minimizing property does not imply strict convexity.

2. Basic definitions. Let a continuous function \mathscr{F} be defined on the Grassmann cone G_r^n of the simple r-vectors R in the linear space V_r^n of all r-vectors \tilde{R} (over the reals). Let \mathscr{F} be positive homogeneous, i.e., $\mathscr{F}(\lambda R) = \lambda \mathscr{F}(R)$ for $\lambda \geq 0$. To a Borel set F in an oriented r-flat \mathscr{R}^+ in the n-dimensional affine space A^n , we associate a simple r-vector as follows: R = 0 if F has r-dimensional measure 0, and otherwise $R = v_1 \wedge v_2 \wedge \cdots \wedge v_r$, is parallel to \mathscr{R}^+ and the measure of the parallelepiped spanned by v_1, v_2, \cdots, v_r equals the measure of F. (Note a set of measure 0 and equality of measures in parallel r-flats are affine concepts and hence welldefined.) We denote below by \mathscr{R} an r-flat parallel to an r-vector R passing through the origin.

DEFINITION 1. We say that \mathscr{F} has the strict area minimizing property (SFMA) if: Whenever R_0, R_1, \dots, R_p are associated to rdimensional faces of an r-dimensional oriented closed polyhedron Pwe have $\mathscr{F}(-R_0) < \Sigma \mathscr{F}(R_i)$, with i = 1 to p, unless $R_i = \lambda_i R_0, \lambda_i \ge 0$ for all i = 1 to p (called the strict Polyhedron Inequality).

DEFINITION 2. \mathscr{F} is said to be strictly weakly convex (SWC)if: Whenever R, R_1 and R_2 are simple, $R = R_1 + R_2, R_1$ is not a scalar multiple of R_2 , we have $\mathscr{F}(R) < \mathscr{F}(R_1) + \mathscr{F}(R_2)$.

DEFINITION 3. \mathscr{F} is said to be convex (C) if there exists a convex extension of \mathscr{F} to V_r^n .

DEFINITION 4. \mathscr{F} is said to be strictly convex (SC) if \mathscr{F} is Cand if there is at least one convex extension F of \mathscr{F} to V_r^n which satisfies the following property: Whenever $\widetilde{R} = \Sigma \widetilde{R}_i$ with $\widetilde{R}, \widetilde{R}_i \in V_r^n$, \widetilde{R} is not a scalar multiple of all \widetilde{R}_i , then $F(\widetilde{R}) < \Sigma F(\widetilde{R}_i)$.

In terms of these definitions we wish to prove below that: if \mathscr{F} is SWC and C then it has the SFMA and that if \mathscr{F} is SWC and C it still need not be SC. This implies that the property SFMA is weaker than the property SC.

3. Some algebraic facts. We collect below some algebraic facts which are either known or are relatively easy to prove.

(a) Let R_1 and R_2 be simple vectors. Then $R_1 + R_2$ is simple if and only if \mathscr{R}_1 and \mathscr{R}_2 intersect in a flat of dimension $\geq r-1$.

(b) Identify r-vectors with points representing them in V_r^n considered as an affine space. If a line in V_r^n contains three points corresponding to simple vectors, then the entire line consists of simple vectors. Put differently, if R_1 and R_2 are simple and $R_i + R_2$ is not simple, then the line joining R_1 and R_2 in V_r^n does not contain any simple vector other than R_1 and R_2 .

Suppose next that R_1, R_2 and R_3 are simple but that $R_1 + R_j$ is nonsimple for all i, j = 1 to 3 when $i \neq j$. Then we have the following:

(c) The set $\{R_1, R_2, R_3\}$ is a linearly independent set of vectors.

(d) The plane π containing $\varDelta R_1 R_2 R_3$ does not contain any line of simple vectors.

(e) The flat Ω spanned by the origin, R_1 , R_2 and R_3 does not contain a 2-plane of simple vectors.

(f) If a line l lies in Ω and does not pass through the origin, then l cannot be a line of simple vectors, i.e., l cannot contain three distinct points corresponding to simple vectors.

4. An example. Busemann and Straus [2] give the following concrete example which we use here to illustrate the above algebraic facts. Let the vectors e_1, e_2, e_3, e_4 form a base for the four dimensional affine space A^4 . Denote by e_{ij} the 2-vectors $e_i \wedge e_j$. Let Ω denote the flat spanned by the origin, e_{12}, e_{34} and $(e_1 + e_3) \wedge (e_2 + e_4)$ in V_2^4 . We denote the vectors spanning Ω by z, R_1, R_2 and R_3 respectively. Then $R_i + R_j$ is nonsimple for all i, j = 1 to 3 when $i \neq j$. Thus any line l in Ω which does not pass through the origin cannot contain three distinct points representing simple vectors.

5. SWC with C is stronger than the SFMA.

LEMMA A. If a function \mathcal{F} is SWC and C then it has the SFMA.

Proof. Let $R_0, R_1, R_2, \dots, R_p$ be r-vectors corresponding to rfaces of an r-dimensional oriented closed polyhedron P. We need consider only the case when not all R_i are scalar multiples of R_0 , i > 0. In such a case, since P is closed, some other faces which are not parallel to the face represented by R_0 intersect the face represented by R_0 in an (r-1)-dimensional set. Let R_1 be associated with one such face. Then from § 3a the vector $R_0 + R_1$ is simple. Also since P is closed we have $-(R_0 + R_1) = \sum_{i=2}^{p} R_i$. Thus $\sum_{i=2}^{p} R_i$ is also simple. But then the equation: $-R_0 = R_1 + \sum_{i=2}^{p} R_i$ shows that

$$\mathscr{F}(-R_{\scriptscriptstyle 0}) < \mathscr{F}(R_{\scriptscriptstyle 1}) + \mathscr{F}\left(\sum\limits_{\imath=2}^{p}R_{i}
ight),$$

and, since \mathscr{F} is convex, $\mathscr{F}(-R_0) < \sum_{i=1}^p \mathscr{F}(R_i)$ so that \mathscr{F} has the SFMA.

6. Existence of functions which are SWC and C but not SC.

LEMMA B. There exist functions which are SWC and C but not SC.

Proof. We actually construct an absolutely homogeneous function of this type. Take three simple unit vectors R_1, R_2, R_3 in V_r^n such that $R_i + R_j$ is nonsimple for all i, j = 1 to 3 with $i \neq j$. Choose unit vectors $\tilde{S}_1, \tilde{S}_2, \dots, \tilde{S}_p$ in V_r^n such that the set of vectors $\{R_i, \tilde{S}_j\},$ i = 1 to 3, j = 1 to p where

$$p=inom{n}{r}-3$$
 ,

is a base for V_r^n . Thus given $\widetilde{R} \in V_r^n$ we find unique numbers $\{a_i, b_j\}$ such that $\widetilde{R} = \Sigma a_i R_i + \Sigma b_j \widetilde{S}_j$. We denote this last written equality by the notation $\widetilde{R} = (a_i, b_j)$. Now define the function \mathscr{F} in V_r^n in the following manner:

If $\widetilde{R} = (a_i, b_j)$ then $\mathscr{F}(\widetilde{R}) = \sum_{i,j} (a_i^2 + b_j^2)^{1/2} + (\sum_j b_j^2)^{1/2}$ with i = 1 to 3 and j = 1 to p.

We verify that \mathcal{F} has the required property.

(i) \mathscr{F} is clearly absolutely homogeneous $(\mathscr{F}(\lambda R) = |\lambda| \mathscr{F}(R))$ and a convex function on V_r^n , hence convex on G_r^n .

(ii) We next show \mathscr{F} is SWC. Let $R = (a_i, b_j)$ and

$$R' = (a'_i, b'_j)$$

be two simple r-vectors such that R + R' is also simple. Assume

further that $\mathscr{F}(R+R') = \mathscr{F}(R) + \mathscr{F}(R')$. We prove \mathscr{R} is parallel to \mathscr{R}' . Assume that \mathscr{R} is not parallel to \mathscr{R}' . Then the line l in V_r^n joining R to R' is a line of simple vectors and l does not pass through the origin. Therefore from the algebraic facts, l does not lie in the flat Ω spanned by the origin, R_1, R_2 and R_3 . Therefore either a b_j or a b'_j is different from zero. Without loss of generality assume that $b_1 \neq 0$. We make the simple observation that when numbers α_i and β_i are such that $\alpha_i \leq \beta_i$ and $\Sigma \alpha_i = \Sigma \beta_i$ then each $\alpha_k = \beta_k$. From this and $\mathscr{F}(R+R') = \mathscr{F}(R) + \mathscr{F}(R')$ we have the following equalities:

(E)
$$(\Sigma b_j^2)^{1/2} + (\Sigma b_j'^2)^{1/2} = (\Sigma (b_j + b_j')^2)^{1/2}$$
.

For all (i, j),

$$(\mathrm{E}_{ij}) \hspace{1cm} (a_i^2 + b_j^2)^{1/2} + ({a'_i}^2 + {b'_j}^2)^{1/2} = ((a_i + a'_i)^2 + (b_j + b'_j)^2)^{1/2} \; .$$

From the equality (E) we see that there exists a number μ such that

(F)
$$(b'_1, b'_2, \cdots, b'_p) = \mu(b_1, b_2, \cdots, b_p)$$

Also from the equalities (E_{i_1}) we have numbers μ_i such that

(F_i)
$$(a'_i, b'_1) = \mu_i(a_i, b_1)$$
.

But combining (F_i) with (F) and remembering that $b_1 \neq 0$ we have $\mu = b'_1/b_1 = \mu_i$. This shows $(a'_i, b'_j) = \mu(a_i, b_j)$ which would mean that \mathscr{R} and \mathscr{R}' are parallel. This proves \mathscr{F} is SWC.

(iii) However, \mathscr{F} is not SC. This can be proved as follows: Take any simple vector R which is linearly dependent on R_1, R_2, R_3 say $R = a_1R_1 + a_2R_2 + a_3R_3$ with $a_i \neq 0, i = 1$ to 3. Then we have $\mathscr{F}(R) = |a_1| + |a_2| + |a_3| = \mathscr{F}(a_1R_1) + \mathscr{F}(a_2R_2) + \mathscr{F}(a_3R_3)$, which violates strict inequality even on G_r^n . Consequently it is impossible to extend \mathscr{F} to a strictly convex function on V_r^n . We note here that in the example of § 4 all vectors $a_1R_1 + a_2R_2 + (-a_1a_2/a_1 + a_2)R_3$ are simple. This completes the proof of Lemma B.

7. THEOREM. The strict area minimizing property does not imply strict convexity.

Proof. By Lemma A we have the SFMA implied by SWC and C. But by Lemma B, SWC and C do not imply SC. Hence, the SFMA does not imply SC. Briefly $SFMA \leq SWC + C < SC$.

Suggestions for this paper from Professor H. Busemann are gratefully acknowledged.

References

N. Bourbaki, Algèbre Multilinéaire, Elements de Math, I, livre II, Chap. 3, Paris, 1958.
 H. Busemann, and E. G. Straus, Area and normality, Pacific J. Math. 10 (1960), 35-72.
 H. Busemann, and G. C. Shephard, Convexity on nonconvex sets, Proc. Coll. Convexity, Copenhagen, 1965, (1967), 20-33.

Received October 16, 1968. This work was partially supported by the National Science Foundation under Grant No. GP-7472.

UNIVERSITY OF SOUTHERN CALIFORNIA, LOS ANGELES

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN Stanford University Stanford, California

RICHARD PIERCE

J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007

BASIL GORDON University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

University of Washington Seattle, Washington 98105

B. H. NEUMANN F. WOLF

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA	STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY	UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA	UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY	WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA	UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY	* * *
OREGON STATE UNIVERSITY	AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON	CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY	TRW SYSTEMS
UNIVERSITY OF SOUTHERN CALIFORNIA	NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the *Pacific Journal of Mathematics* should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. **36**, 1539–1546. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is \$8.00; single issues, \$3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues \$1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION

Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17. Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.

Pacific Journal of Mathematics Vol. 30, No. 3 November, 1969

Willard Ellis Baxter, <i>Topological rings with property</i> (Y) Sterling K. Berberian, <i>Note on some spectral inequalities of C. R.</i>	563
<i>Putnam</i>	573
David Theodore Brown, <i>Galois theory for Banach algebras</i>	577
Dennis K. Burke and R. A. Stoltenberg, A note on p-spaces and Moore	
spaces	601
Rafael Van Severen Chacon and Stephen Allan McGrath, <i>Estimates of</i>	
positive contractions	609
Rene Felix Dennemeyer, <i>Conjugate surfaces for multiple integral problems</i>	
in the calculus of variations	621
Edwin O. Elliott, <i>Measures on countable product spaces</i>	
John Moss Grover, <i>Covering groups of groups of Lie type</i>	
Charles Lemuel Hagopian, Concerning semi-local-connectedness and	
cutting in nonlocally connected continua	657
Velmer B. Headley, <i>A monotonicity principle for eigenvalues</i>	
John Joseph Hutchinson, Intrinsic extensions of rings	
Harold H. Johnson, Determination of hyperbolicity by partial	
prolongations	679
Tilla Weinstein, <i>Holomorphic quadratic differentials on surfaces in</i> E^3	697
R. C. Lacher, <i>Cell-like mappings. I</i>	717
Roger McCann, A classification of centers	733
Curtis L. Outlaw, <i>Mean value iteration of nonexpansive mappings in a</i>	
Banach space	747
Allan C. Peterson, <i>Distribution of zeros of solutions of a fourth order</i>	
differential equation	751
Bhalchandra B. Phadke, <i>Polyhedron inequality and strict convexity</i>	765
Jack Wyndall Rogers Jr., On universal tree-like continua.	771
Edgar Andrews Rutter, <i>Two characterizations of quasi-Frobenius rings</i>	777
G. Sankaranarayanan and C. Suyambulingom, <i>Some renewal theorems</i>	
concerning a sequence of correlated random variable <mark>s</mark>	785
Joel E. Schneider, A note on the theory of primes	805
Richard Peter Stanley, Zero square rings	811
Edward D. Tymchatyn, <i>The 2-cell as a partially ordered space</i>	825
Craig A. Wood, <i>On general</i> Z.P.I <i>rings</i>	837