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The object of this note is to determine the action of the
Pontryagin squares in the cohomology of the Thom space of a
vector bundle, This computation is then applied to the case
of the normal bundle of a manifold imbedded in Euclidean
space to give simplified proofs of some theorems of Mahowald.

The first of Mahowald’s theorems [3] was inspired by some 1940
results of Whitney [9], who showed that in certain cases the Euler
class (with twisted integer coefficients) of the normal bundle of a non-
orientable surface imbedded in Euclidean 4-space could be nonzero.
This contrasts with the well-known theorem that the Euler class of the
normal bundle of an orientable manifold in Fuclidean space is always
Zero.

2. Notation and statement of results. For any space X, we
will use integral cohomology H*(X, Z); cohomology with integers mod n
as coefficients, H%(X,Z,); cohomology with twisted integer coefficients,
H(X, 2°) cohomology with twisted integers mod 7 coefficients, H(X, £7);
and rational cohomology, HYX, Q). In the third and fourth cases the
local system of groups which is used for coefficients will be determined
by the Stiefel-Whitney class w, ¢ H(X, Z,). Note that for the case n=2,
we have

H'(X, 2°)=H"X, Z) .

since a cyclic group of order 2 admits no nontrivial automorphisms.

Let (#, p, B, S*') be an (» — 1)-sphere bundle over the base space
B with structure group 0(r). We will use the following notation for
characteristic classes of such a bundle:

Stiefel-Whitney classes:

w; e H(B, Z,) , 1<isn
W;,e H(B, ), 1<i<m, 70dd .
Pontrjagin classes:
»;€e HB, Z) , 1<43<n/2.

Euler class:

X,e H*(B, &) . (If % is odd, then X,=W,.)
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134 W. S. MASSEY

Let (A4, m, B, D*) be the associated n-dimensional disc bundle; we will
call the pair (4, E) or the single space A/E the Thom space of the
bundle. The Thom class, Ue H"(A, E, 2°), has twisted integer coeffi-
cients; by taking cup products with U, we obtain the Thom isomor-
phism (see Thom [6]).

H(A, )~ H""(A, K, Z) ,
HY(A,Z)~ H"™A, E, %),
HA, =°,) ~ H"™(A, E, Z,) , etc.

Recall also that the projection 7: A — B is a deformation retraction,
and hence induces isomorphisms of cohomology groups with any coeffi-
ents (even local coefficients!). For the sake of convenience, we will
often identify the cohomology groups of A and B by means of this
isomorphism; similarly we will identify the cohomology groups of the
pair (4, E) and the space (A/E) (except in dimension 0) with ordinary
coefficients (the local coefficient systems » and », do not exist in the
space A/E).

The obvious epimorphism p,: Z — Z, and monomorphism 6: Z, — Z,
induce homomorphisms of cohomology groups wich will be denoted as
follows:

pu: H(X, Z) — HY(X, Z,) ,
O.: H(X, 2°) — HYX, 2.,),
0: H(X, Z,) — HYX, Z,) ,
6: H(X, Z,) — HYX, 2°.) .

For convenience, we will let U,=p,U), the Thom class reduced mod 2.
Our main concern will be the Pontryagin squaring operation,

: H(X, Z,) — H"(X, Zy).

If ¢ is odd, the Pontryagin square can be expressed in terms of
simpler cohomology operations. (see formula (4.2) below); this is not
true for ¢ even. For a list of papers describing this operation, see
the first paragraph of [7]. Our main result is the following, which
describes the Pontryagin square of the mod 2 Thom class, U,.

THEOREM 1. Let (E, p, B, S"™) be a (not necessarily orientable)
(n — 1)-sphere bundle with structure group 0(n), n even. Then

L@ (UZ) = [154(Xn) + 5(w1'wn—-1)] * U .

As a corollary, we obtain the following result which was proved
by Whitney [9] in 1940 for the case n = 2; the general case is due
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to Mahowald, [3, Th. I]:

COROLLARY 1. Let M* be a compact, connected, nonorientable n-
manifold (n even) which is imbedded differentiably in R*". Then
the twisted Euler class of the normal bundle, X,, satisfies the follow-
ing condition:

l54(Xn) + g(wlwn—l) =0.
(Here w; denotes the ¢th dual Stiefel-Whitney class of M*.)

In particular, if ,%,_, # 0 (which can only happen if » is a power
of 2, cf. [4]) then X, == 0. Apparently this is the only general result
known about the twisted Euler class of the normal bundle to a non-
orientable manifold.

The corollary may be derived from the theorem as follows: Let
(E, p, B, S*') denote the normal sphere bundle of the imbedding, and
(A, &, B, D") the associated disc bundle. It is well known that the top
homology group of the Thom space,

H..(A/E, Z) = H,.(A, E, Z) ,
is infinite cyclic, and the Hurewicz homomorphism
T..(A/E) — H,,(A/E)

is an epimorphism. From this it follows that {Z(U,), > = 0 for any
xe H,,(A/E, Z), and hence (U, = 0. Applying the formula for
F((U,) in Theorem I, we obtain the corollary.

Next, we give formulas for the Pontryagin square of an arbitrary
mod 2 cohomology class of even degree in the Thom space of a vector
bundle.

TuEOREM II. Let (E, p, B, S**) be an (n — 1)-sphere bundle with
structure group 0(n), and let x€ H™(B, Z,), m + n even. Then if m
and n are both even,

P (Ug) = {(F@]0LX,) + 0(ww,_,)]
+ 0w, .xSq'x + ww,Sq™'z]}- U

while 1f m and n are odd,
P (U) = {(F @)[0(X,) + O(ww,_, + wiw, )]
+ O[w,_xSq'x + w,w,Sq" ]} U .

As a corollary, we derive a necessary condition due to Mahowald
[3] for the imbeddability of an orientable manifold in Euclidean space
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of dimension 4%k with codimension #.

COROLLARY 2. Let M be a compact, connected, orientable manifold
of dimension q which is differentiably imbedded in Euclidean space
of dimension q + n = 4k. Then for any.xc H™(M, Z,), where m =
1/2(q — n), we must have

Wo_XSq'x = 0.

Proof of corollary. One applies Theorem II with B = M and
(&, p, B, S*') the normal bundle of the imbedding. Since M is assumed
orientable, w, =0, w, =0, X, =0, and W, =0. Exactly as in the
proof of the previous corollary we know that 2 (U,-x) =0 in this
case. Thus we conclude that

8(,_,xSq'x) = 0
for any x e H™(M, Z,). Since M is orientable, the homomorphism
0: H (M, Z,) — H'(M, Z))

is a monomorphism, and therefore we must have @, _xSqxz = 0, as
desired.

Perhaps the neatest application of this corollary is to prove that
g-dimensional real projective space does not imbed in R** for q =
2" + 1. A discussion of the possibilities of using this theorem to prove
non-imbedding results is given in § 5.

COROLLARY 3. Let M be a compact, connected, nonorientable
manifold of dimension q which is differentiably imbedded in Euclidean
space of dimension q + n = 4k, ¢ and n even. Then for any element
xe H"(M, Z,), where m = (1/2)(q — n), we must have

P (@)-[0(X.) + 0(@,%,_)] + 0(@,. wSg'w) =0 .

This is a generalization of Corollary 1, and the proof is similar.
Presumably this theorem would enable one to prove in certain cases
that 0(X,) # 0, and hence X, == 0, but the author knows of on ex-
amples to illustrate this possibility. Perhaps the most likely case in
which this theorem could be applied is the case where n = ¢ — 4, m = 2.

3. Proof of Theorem I. As is usual in such cases, one only need
prove Theorem I in the case of the universal example, where B =
B0O(n), n even. Then E has the same homotopy type as BO(n — 1). Con-
sider the following commutative diagram for this universal example:
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K

oo 2 HYA, B, Z) L HY(A, Z) -2 HXE, Z,) 2 -

11 // T T

H*(A, 7 ) ES 2

= | |

-— H*B, 2°,) —> H*(B, Z)) H*(E, Z,) — -+ .
¥ iz ¥

p*

The top line of this diagram is the mod k& cohomology sequence
of the pair (A4, F) while the bottom line is the Gysin sequence of
fibration. All vertical arrows are isomorphisms; arrow No. 1 denotes
the Thom isomorphism, and arrow No. 2 is the identity. It is well
known that in these exact sequences for the case k=2 (i.e., mod2 coho-
mology), the following statements are true:

p* and 4* are epimorphisms,

¢ and j* are monomorphisms, and

4 and 0 are zero.

We assert that these statements are also true in case £k =4. In
order to prove this, it suffices to prove that j* is a monomorphism,
and for this purpose consider the following commutative diagram:

0— H'\(4, B, Z) T H\(4, 2)

Sqt Sqt
0— HYA, E, Z,) -2 H'(A, Z,)
[/ 7

. — HYA, E, Z) -2 HY(A, Z)
n 7
0— HYA, E, Z) -2~ HYA, Z) .

The vertical lines are exact sequences corresponding to the following
short exact sequence of coefficients:

0— 2,0 7,2

Z, 0.
Let x ¢ HY (A, E, Z,) and assume that j*(x) = j(x) = 0. Therefore
JN(®) = Nj(x) =0

and since j, is a monomorphism, n(x) = 0. By exactness, there exists
an element y ¢ H'(A, E, Z,) such that

Oy) =2 .

Since 67,(y) = 0, there exists an element ze H* (A4, Z,) such that
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Sq'(2) = Jx¥) .

We wish to show that z can be chosen so that z¢ image j,. For this
purpose, recall that we are identifying H*(4, Z,) with H*(B, Z,) =
ZJw,, w,, -+, w,]; using this identification, the image of j* is the ideal
generated by w,. We may split H*(A, Z,) into the (vector space) direct
sum of this ideal and a supplementary subspace as follows: one sub-
space is spanned by all monomials which have w, as a factor, the
other subspace is spanned by those monomials which do not have w,
as a factor. It is readily verified that the homomorphism

Sq': H*(A, Z;) — H*(4, Z)

maps each of these summands into itself (this depends on the fact
that » is even). Since j,(y) belong to this ideal generated by w,, we
can choose z so it also belongs to this ideal. Therefore z = j,(u) for
some element uwc HY(A4, K, Z,). It follows that

Jy — Sq'w) = 0.
Since j, is a monomorphism, y = Sq¢'u, and
%= 0(y) =60Sqg'u =0

as asserted.
Next, let X, e H*(BO(n), 2°) denote the Euler class (» even). We
assert that

X: = pup€c H*(BO(n), 4) .

To prove this, we make use of the fact that all torsion in H*(BO(n), Z)
is of order 2 (cf. Borel and Hirzebruch, [2]). Hence it suffices to
prove that the following two equations:

0(X?) = 0oPn;2) and
(X3 = 0oPus2) »

where p, is the homomorphism of cohomology groups induced by the
coefficient map Z — Q.

As to the first equation, it is well known that p,(X,) = w, and
0p;) = wi;, hence

(Oz(X:) = wi = pz(pnlz) .

To prove the second equation, consider the following commutative
diagram.
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H™(BO(n), Z) L H*™(BSOM), Z)
) ;
H*(BO(n), @) L1 H*BSO(n), Q) .

Here f: BSO(n) — BO(n) is the 2-fold covering induced by the inclu-
sion of SO(») in O(n). It is well known that 0,/*(X?2) = 0of *(Dus)
and that f* is a monomorphism on rational cohomology (see Borel and

Hirzebruch [2]). Hence p((X?) = py(P.:) as required.
With these preliminaries out of the way, we will now prove
Theorem I by consideration of the following commutative diagram:

H“A, E, Z) -2 H"4, Z)
H™(A, B, Z) -2 H™(A, Z) .

It is well known that j (U, = w,, and according to Thomas [8],
Theorem C,

P (W,) = PdDap) + O(wS¢""'w,)
Since j, is a monomorphism, it suffices to prove that
30X, + [B(ww, )] U} = 0pass) + 0(w.Sq~'w,)
in order to complete the proof. Now
P(X) U = py(X,-U)
and

Jd0(X,) U} = §odX,,- U) = 0,9(X,,- U)
= 04 X3) = 04Dns2)

since j(U) = X,. Similarly,
[g(wx'wn—-x)]‘ U= 0(w1wn—1‘ Uz) = 6(wxsq%_lU2) ’
hence

j4{§wlwn—-1) * U} = j40(w1Sqn—1 Uz)
— 0j(w,S¢"T,)
= (w,Sq" " 'w,)

since j,(U,) = w,. This completes the proof.

4. Proof of Theorem 2. The proof is a routine application of
the following two formulas. For the first formula, assume that X is
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a topological space, v ¢ H™(X, Z,), ve H"(X, Z,), and m = n mod 2; then
the Pontryagin square of the cup product uv is given by the follow-
ing formula:

P(uv) = (Pu)(FPv) + 0[(Sq™u)vSq'v

4.1)
+ uSq'u(Sq )] .

For the case where m and n are both odd, this formula is given by
Thomas [8], formula (10.5); in case m and » are even, the formula is
given by Nakaoka [5], Theorem III. Our second formula expresses
the Pontryagin square of an odd dimensional cohomology class in terms
of more usual cohomology operations. Assume u e H*(X, Z,); then

4.2) P(u) = pBSeu + 0S¢ Sq'u ,

where B is the Bockstein coboundary operator associated with the exact
coefficient sequence 02— Z — Z,— 0. In particular, if we apply
(4.2) to the computation of .&7(U,) for an m-dimensional vector bundle,
m odd, and make use of the formula Sq'U, = w,U, we obtain the
formula

(4.3) P (U) = [0 W) + G(w,w,_, + wiw,_,)]-U .

The proof of Theorem II is now a direct application of formula (4.1);
one also uses Theorem I in case m and % are even, and (4.3) in case
m and n are odd.

5. Critique of corollary 2. We propose to discuss the follow-
ing question: Under what conditions does Corollary 2 enable one to
prove nonimbedding theorems not provable by more standard and/or
elementary methods? We will assume, as in the statement of the
covollary, that M is a compact, connected, orientable manifold of
dimension ¢, that w,_, = 0, and

g+ n=0mod4.

We wish to prove that M can not be imbedded differentiably in Euclidean
space of dimension q¢ + n. We may as well assume that @, = 0 for
all ¢ > n — 1, otherwise the proof would be trivial.

We assert that if n is even, then for any xzec H™(M, Z,), m =
(1/2)(g — n),

W, 2S8q'x = 0

under the above hypotheses, and hence Corollary 2 can not be applied
to prove nonimbedding results.

Proof of assertion. By Lemma 1 of Massey and Peterson [4],
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W,_xSq'c = Q" (xSq'x)

— Qn—l(lex)
= 2 @R
But
i Qi+t if j is even ,
QQ—{O if j is odd .
Hence

w,_xSq'w = 3, (Q)(Q ")

itj=n—1

= 3 @)@9) .

where the summations are restricted to even values of 5 and odd values
of k respectively.

If n =0mod4, then 7 must also be odd in this sum, and the non-
zero terms occur in pairs which cancel. If # = 2mod 4, then all terms
cancel in pairs except for the term where ¢ = k = n/2, and one sees
that in this case

W, 2S¢ = Q") = W,-2°.

But by our hypothesis, &, = 0; hence w,_,2Sq¢'x = 0 in this case also.

Thus this method is only of interest in case # and q are odd. Perhaps
the first case of interest is the case where ¢ is odd and »n = ¢ — 2.
In this case m =1, xe H(M, Z,), Sq¢'z = «?, and

W,_2Sq's = Q" 2"y e H (M, Z,) .

The question is, for what values of n can Q" *(«*) be nonzero? Now
it is easy to prove that for any l-dimensional cohomology class x,

Q(%):x+x2+x4—}-x8+ e +g(;2k+ ces,
(see Atiyah and Hirzebruch [1], pp. 168-169), hence
QE’) = (Qx)’ = o° + (¢* + 2°) + (¢° + 2°)

4o @ ) e,

Therefore the only case for which Q"'(«*) can possibly be nonzero is
the case ¢ = n + 2 = 2% + 1, and in this case

Q@) = ar .

Thus the example M = g-dimensional real projective space is typical
for this situation.
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The next case of interest would be the case ¢ odd, n =q¢ — 6, m = 3.
The author knows no nontrivial examples to illustrate this case.
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