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Denote by S a complex (nondegenerate) Banach space.
Suppose that T is a transformation from a subset of S to S.
A complex number 2 is said to be in the resolvent of T if
(A — T')! exists, has domain S and is Fréchet differentiable
(i.e., if p is in S there is a unique continuous linear trans-
formation F = [(AI — T )')(p) from S to S so that

m}llq~pll*‘ NAI—-T)y'q—Q@I—-T)y'p—Fg—pll=0)

and locally Lipschitzean everywhere on S. A complex number
is said to be in the spectrum of 7 if it is not in the resolvent
of T.

Suppose in addition that the domain of T contains an open
subset of S on which T is Lipschitzean,

TaeoreM., T has a (nonempty) spectrum.

If T is a continuous linear transformation from S to S, then the
notion of resolvent and spectrum given here coincides with the usual
one ([1], p. 209, for example). Such a transformation T is, of course,
Lipschitzean on all of S and hence the above theorem gives as a
corollary the familiar result that a continuous linear transformation
on a complex Banach space has a spectrum.

The set of all complex numbers is denoted by C.

LeMMA. Suppose that d >0, p is in S, @ is a transformation
from a subset of S to S, D is an open set containing p which is a
subset of the domain Q, Q is Lipschitzean on D and (I—cQ)™" exists
and has domain S if ¢ is in C and |c| < d. Then,

lim_,(I—-cQ) ™ p=0p.

Proof. Denote by M a positive number so that ||Qr — Qs]|| <
M||r—s]| if r and s are in D. Suppose € > 0. Denote by ¢ a number
so that 0 < J <min (e, 1/2) and {ge S:||q — p|| =< 4} is a subset of D.
Denote by ¢’ a positive number so that ¢’(max (M, || @p||)) < 6/2. Denote
by ¢ a member of C so that |¢| < min (¢, d). Denote (I — ¢Q)'p by
q, denote » by ¢, and » + ¢Qq,_, by ¢, =1,2, +--,

Then, ||¢. — qll =|Ip + cQq — ¢l = l¢||| Qg |l < 6/2. Suppose
that k is a positive integer so that

”qm - qm—-l” < (5/2)m,m = 1) 2, "'yk .
157
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Then [ g, — pll = 275 1@ — @5 1| = 275 (0/2)7 <0,m = 0,1, -+,
and hence
@i — @]l = 1| @ — Q. ||
=le|l M|l g — qp
= |e| M(0/2)F = (9/2)+ .

Hence ||q, — .. || =< (6/2)*,n =1,2, --- and therefore ¢, q,, --- con-
verges to a point » of S. Note that |[q,., — || £ 37, (0/2)+' <5, n=
1,2, --- so that || »r—p|| £ 6 and hence r isin D. But ||r—(p+cQ7) || =

Hr—gur) + (@ + Q) — @+ Q) || S |7 — @l + || Qe, — Qr]| =
N7 — @ueill +]e| M||q, —7||—0 as n— . Hence r = p + cQr, i.e.,
(I—cQr=mp, e, r=(I—cQ)'p=¢q. Hence, [(I—-cQ)'p —p|[=
0 < . This proves the lemma.

Proof of theorem. Suppose the statement of the theorem is false.
Then T has an inverse since if not, 0 would be in the spectrum of T.
Denote by D an open set on which T is defined and is Lipschitzean.

Denote by p a point of D different from — T(0).
Define f(A) to be (\] — T)~'p for all » in C. Suppose b is in C.
If ¢ is in S and different from p denote

(1/llq — pIINIBI — T)'q — (b — T)'p] — [(bI — T)'I'(p)q — D)}

by L(g). Denote by L(p) the zero element of S and note that
lim,_, L(q) = L(p) since (bI — T)* is Fréchet differentiable at p. Denote
O — T)* by Q. If »is in C, then

N —=T)=[I—-®-—2\0bI—- T)|I—T)
and, since both A\ — T)™* and (b — T)* exist and have domain S,
it follows that [T — (b — MBI — T)'[7 = [I — (b — M)Q]™* has the same
properties and A\ — T)* = QI — (b — N)Q] ™.

Hence, if A\ is in C,
SO — f(0) = QL — (b —MQ]™'p — Qp
= QI — (b —MQI"'p — p]
+ I = (b —=MQI"p — pl| LI — (b — MQ]™'D) .

But [IT— (b - MRl —» = (b—MQII— (b —MQ]"p so

=)7L — fB)]
= —Q' @R[ — (b — MR
+ (b =N/ =) (R — (b —MRI'p||
X L(I — (b — MQI™'p) — —Q'(n)Qp

as A — b since lim,_ ;[T — (b — N)@]'p» = p. Hence,
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S0y = =[] — T)" (@I — T)7'p.

Now lim, ,(I — ¢T)'p = p. Denote by 6 a positive number so
that if |¢| <9, then ||(I —¢T)'p||<||p||+ 1. Then if X is in C
and [N = 1/6, [[AO) =M = T)pll = [IN] [ = A/NT)'pl| <
d(lpll +1). Hence f is bounded. So, by Liouville’s theorem ([1], p.
129, for example), f is constant, i.e., there is a point ¢ in S such
that if A is in C, W[ — T)™'p = f(\) = ¢, and so \g = p + Tq. Hence
jt must be that ¢ =0, i.e., p = — T(D), a confradiction. This establishes
the theorem.

The author considers it likely that the statement of the theorem
is true if the condition (in the definition of resolvent) that (\[— T)™*
be locally Lipschitzean is dropped.
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