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One of the important investigations in the theory of sum-
mability is that of finding necessary and sufficient conditions
on an infinite matrix in order that the matrix should trans-
form one (complex) sequence space into the same or another
sequence space. In this note some such theorems are given,

Let
C, = the space of null sequences;
C = the space of convergent sequences;
I’ = the space of sequences # = {#,} such that |z,|'* —0, as p— oo,
The space I" can be regarded as the space of all integral funec-
tions f(z) = o, x,27;
I'* = the space of sequences s = {s,} such that the sequence {|s,|'?}
is bounded. I'* may also be considered as the space conjugate
to I” regarded as the space of integral functions f(2)=32, x,2".
Each continuous linear functional Ue I'* is of the form U(f) =
Dlo=1 Sp2pe
Let A = (a,,), (n,p = 1,2, --+), be an infinite matrix of complex
elements. The A transform of z = {x,}, ¥ = {y.} is the sequence de-
fined by the equations

(1) ynzg‘,lam,x,,,(nzl,2,---).

Here y = {y,} and « = {x,} are complex sequences. Similarly, the A
transform of s = {s,}, ¢t = {¢,} is the sequence defined by the equations

(2) ty = QaySpy (0= 1,2, -+1) .
=1

Here also ¢ = {£,} and s = {s,} are both complex sequences.
The following theorems are true:

THEOREM I. Let (1) hold. In order that {y,} should belong to I
whenever {x,} belongs to C,, it is necessary and sufficient that
(I, 1) the sequence {0,} is a null sequence, where

(3) 0= (S lanl) =12,

Theorem I holds even if C, is replaced by C.
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THEOREM II. Let (1) hold. In order that {y.} should belong to
I'* whenever {x,} belongs to C, it is necessary and suficient that

(IL, 1) the sequence {0,} is bounded, where 0,,(n =1,2, --+), are
given by (3).

THEOREM III. Let (1) hold. In order that {y,} should belong to
C whenever {x,} belongs to I", it is necessary and sufficient that

(IIL, 1) |a,,|"» £ M independently of n, p;

(I1L, 2) lim,.. a,, = a, exists for each fixed p.

THEOREM 1V. Let (2) hold. In order that {t,} should belong to
C whenever {s,} belongs to I'*, it is mecessary and sufficient that
(IV, 1) the sequence {f.(2)} of integral functions

(4) Fule) = X ans, (n = 1,2, ),

is uniformly bounded on every compact set (of the complex plane);
v, 2y = (111, 2) lim,_. a,, = a, exists for each fixed p.

THEOREM V. Let (1) hold. In order that {y,} should belong to
I'* whenever {x,} belongs to I', it is necessary and sufficient that
v, |a,, | < M independently of n, p.

THEOREM VI. Let (2) hold. In order that {t,} should belong to
I whenever {s,} belongs to I'*, it is necessary and sufficient that

(VL 1) | fu(®) ' — 0, as n— o, uniformly on every compact set
(of the complex plane), where {f.,(2)} is the sequence of integral func-
tions f,(2) given by (4).

THEOREM VII. Let (1) hold with a; =0 for i>j. In order that
{y.} should belong to I' whenever {x,} belongs to I', it is necessary
and sufficient that

VIL 1) |a,., """ £ M independently of n, p.

The matrix transformation of I'* into I'* was studied by Heller [6].

The sufficiency, in each case is a straightforward calculation.
The necessity of any of the above conditions is proved by taking
special sequences, and constructing sequences to contradict the given
condition, or by using Functional Analysis. Indeed, to prove the neces-
sity of (IIL, 1), let U,(®) = ¥, = S5 @, (0 = 1,2, --+), for each
fixed ® = {x,} e I". Then {U,(x)} represents a sequence of continuous
linear functionals on I" ([4], Th. 4). Here {|a,,|"?} is bounded for
each fixed n. Since {y.,} € C, it follows that Iim,_..| U,(x) | < o for each
fixed x e I"'. Define for each xze ", | x| = upper bound (| z,|"?, p = 1).
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Then for =z, 2'c¢l’,|x — «'| defines a metric or distance in I". With
the metric, I” is a complete metric space. Therefore, by Theorem 11
of ([1], p.19), there is a closed sphere S and a fixed number M such
that

(5) (U @) < M for xeSand all n>1.

Take the sphere S as |[z|<d. Set x, = (d/2)* and z; = 0 for all
j # p so that [2] < d/2 and hence z = {x,) ¢ S I". Then, by (5), it
at once follows that

| Uu@) | = [a.,(d/2)" | = M .

That is, | a,, """ < M"*(2/d) < 2m(M)/d where m(M) = max (1, M). This
proves the necessity of (III, 1).
A similar proof applies to condition (VII, 1).

Finally, I thank Professor V. Ganapathy Iyer for his help and
guidance. I also thank the referee for drawing my attention to the
papers of Sheffer [10] and Zeller [14], and other useful comments.
Conditions of Theorems V, VI and VII neither include nor are includ-
ed in Sheffer’s conditions. However, I” and I'* are included in the
spaces considered by Sheffer. Sheffer {10] and Zeller [14] also dealt
with the spaces of all power series with a certain minimal radius of
convergence.
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