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The notions of G-space, W-space, H-space, and higher order
Whitehead product are differentiated through example,

In [3], [4] and [5] D. H. Gottlieb introduces certain subgroups,
G.(X, x,), of the homotopy groups of a space. These groups are re-
lated to the problem of sectioning fibrations with fibre X. Related to
the groups G.(X, «,) is the notion of a G-space. A G-space is a space
with G.(X, z,) = 7,(X, x,) for all n. It is a simple matter to show that
every H-space is a G-space (see below). However, till recently the
status of the converse remained undecided. Recently, Gottlieb pro-
duced an example of a two-stage Postnikov system that is a G-space
but not an H-space (unpublished). The purpose of this note is to clarify
the situation further. We produce a 3-dimensional manifold that is a
G-space but not an H-space. Incidently, the theory of G-spaces tells
us that our example is also a W-space, that is, a space whose White-
head products all vanish.

Finally we would like to resolve a question of G. Porter [6].
Namely, our example is also an example of a space whose higher order
Whitehead products all vanish but, again, is not an H-space.

We would like to acknowledge the priority of D. H. Gottlieb’s
example mentioned above and thank him for his help in the prepara-
tion of this paper.

1. Preliminaries. In this section we  review the elementary
theory of G-spaces presented in [4] and [5].

NoraTtion 1.1. We assume all our spaces X are path connected
C. W. complexes with base point z,. We let X+ be the space of maps
X to X. We let M(X) be the component of the identity map 1: X — X
in X*. Consider the evaluation map e: M(X)— X given by e(f) = f(x,).
This map gives a fibration with fibre M(X), the space of maps in
M(X) with f(x,) = x,.

DEFINITION 1.2. We define
Gn(Xy wO) = e*(nn(M(X)r 1)) g n-n(X) mo) .

THEOREM 1.3. The groups G, (X, x,) are invariant with respect to
base point and homotopy type but not natural with respect to maps.
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Proof. [5].

THEOREM. 1.4.

GX, %) ={[f]1'3-F: X x 8*"— X with FI XV 8" =1V f}.
Proof. [5].
THEOREM L1.5.
G.(X, %) = {[f]]-3 a fibration X & E -2 8 with [f] = 6411},
where 1: S*t' — S*+' ¢s the identity map.

Proof. [4].

DerFiNITION 1.6. P, (X, 2,) is the subgroup of elements [f] in
7. (X, %) with [[f], [g]] = 0 (Whitehead product) for all m and all
[9] € (X, ).

THEOREM 1.7. G.(X, %) & P.(X, x,).
Proof. [5] (see 1.4 above).

REMARK. Ganea [1] has shown that in general G,.(X, «,) = P,(X, %,).
(see 3.4 below).

DEFINITION 1.8. (a) A G-space is a space X with G (X, x) =
(X, %), all n.
(b) A W-space is a space X with P(X, x) = 7.(X, ) for all ».

THEOREM 1.9. (a) Ewvery H-space is a G-space.
(b) Ewvery G-space ts a W-space.

Proof. [5]. (a) Follows from 1.4.
(b) Follows from 1.7.

2. A G-space that is not an H-space. As mentioned in 1.3 the
groups G,(X, x,) are not natural with respect to maps. However, we

can prove the following.

LEMMA 2.1. Suppose we are given o map F: Y X X— Y with
FIYVv X =1V f then Fo: Tl X, %) — Gu(Y, ¥o)-

Proof. For g: S®— X consider the composition
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vx s 9%y« x Ly,

Now apply 1.4.

EXAMPLE 2.2. Let H be a closed subgroup of a Lie group G.
Let (H\G) be the left coset space. Let p: G — (H\G) be the projection.

We have the usual pairing (H/G) x G ——s (H/G) with F/(H/G) v G =
1V p.

THEOREM 2.3. In the situation of 2.2 assume +t,:7w,(H,e)—
7.(G, €) is an inclusion for all n, then (H\G) is a G-space hence a
W-space.

Proof. Since i, is an inclusion p,:7,(G,e) — 7, (H\G, [¢]) is an
epimorphism. On the other hand, by 2.1 ».7.(G,e) & G,.(H\G, [e])
hence G,(H\G, [¢]) = 7, (H\G, [¢]) or H\G is a G-space.

We are now prepared to produce our example. We represent S*
by the complex numbers ¢ 0 < 6 < 27. In SO(3) we let the symbol

(9) denote the matrix
cosfsind 0
— sin 6 cos @ 0)
0 01/.
2.4. Example of a G-space that is mot an H-space. Embed

S'< SO@3) x S* as a subgroup by the following map i(¢*’) = (20) x &',
We let

T Z §4(SHNS0@B) x S*.
LeMMA 2.5. T is a G-space, hence a W-space.

Proof. By 2.3 we need only check
1y T(SY) — 7, (SOB) x SY)

| H

Z Z, bz

is an inclusion, but it is easy to check 7,(1) = 0P 3. Note this implies
(T) = Z,D Z..

LemMA 2.6. T ts not an H-space.

Proof. (a) T is a 3-dimensional manifold hence H*(T, Z,) = 0,
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n >3

(b) HXT,Z) = Z,, generated say by «. This is by remarks at
the end of 2.5.

(¢) From the universal coefficient theorem we know there is 8+ 0
in H(T, Z;) B indecomposable (a* = 0).

(a), (b) and (c¢) implies that H*(T, Z,) does not support a Hopf
algebra structure, hence, T is not an H space. In particular if
T x T—h—> T is a Hopf map.

0=1"B)=(1RL+BR/L +r(aRa) =26QRL+ ---=0.

We could also note that T = Z)\SO(3) where Z, is the group (0),
(2/3x), (4/3w). Then, using the spectral sequence of a covering we
have

Z, n=20,1238
HYT, Z) =
0 n> 3.

This does not support a Hopf algebra structure.
3. Higher order Whitehead products. The purpose of this

section is to point out that our example also answers a question of
G. Porter [6].

DEFINITION 3.1. A space X is said to have trivial higher order
Whitehead products. If given any set of homotopy elements

[fz] € ﬁpi(Xy f%) 1 _£_ 7 é n.

The map Vi, f:: YV S*i— X extends to some f: X7, S?"— X. (see [6]).

THEOREM 3.2. Any G-space has trivial spherical Whitehead
products.

Proof.

LEMMA. Given any n — 1 elements [filen, (X, ») 1<i=n—1
we can find a map

n-—-1

h: ()(1 S”i> X X— X with

h/(VS?’f) v X = <\]:f> v1.

i=1

This is proved by induction. For = = 2 this is 1.4. Suppose we
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have a map
i ()}SP) X X—> X

with the required property.
Consider h: S*»— x X — X an extension of f,_, vV 1 (1.4). Finally,
consider the composition

o (X 87) % X)1xBgma < X _F X,

Set h = (1l x k).
We now finish the proof by noting that the composition

n—1 n—1
(x,gm)Xspn 1% fa (xSm)xX rX
i=1 T \i=1 —
is the required extension of V=, f..

THEOREM 3.3. There exists finite dimensional spaces with trivial
higher order Whitehead products that are mot H-spaces.

Proof. The space T of 2.4 is such an example.

FINAL REMARKS 3.4. Ganea [2] has constructed an infinite dimen-
sional example of a W-space that is not a G-space. G. Lang (un-
published) points out that using recent results of Gottlieb [5] one
can show that CP(3) is a finite dimensional example of such a space.
In [1] it is shown that CP(3) is a W-space, but in [5] it is shown
that every finite dimensional G-space has Euler-Poinare characteristic
0 hence CP(3) is not a G-space.

Porter [7] shows that CP(3) has nontrivial higher order White-
head produets. It would be interesting to have examples of spaces
with vanishing higher order Whitehead products that are not G-
spaces.
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