Pacific Journal of Mathematics # ON ILYEFF'S CONJECTURE A. MEIR AND AMBIKESHWAR SHARMA Vol. 31, No. 2 December 1969 # ON ILYEFF'S CONJECTURE #### A. MEIR AND A. SHARMA An apparently easy problem due to Ilyeff states: If all zeros z_1, z_2, \cdots, z_n of a complex polynomial P(z) lie in $|z| \le 1$ then there is always a zero of P'(z) in each of the disks $|z-z_j| \le 1, j=1, \cdots, n$. If true, the conjecture is best possible as one can see from the example $P(z) = z^n - 1$. In full generality the conjectured result was proved only for polynomials of degree ≤ 4 . In this paper the conjecture is proved for quintics and extensions of earlier results are obtained for zeros of higher derivatives of polynomials having multiple roots. The above conjecture of Ilyeff was published in Hayman's Research Problems in Function Theory. Its validity for polynomials of degree ≤ 4 was proved in [1] and [5]. Rubinstein has shown in [5] that the statement holds in general if $|z_j| = 1$. A conjecture stronger than that of Ilyeff was announced in [2] and was proved for those zeros z_j of P(z) for which $|z_j| = 1$. ### 2. Zeros of multiplicity k on the boundary. THEOREM 1. Let $P(z) = (z - z_0)^k Q(z)$, $Q(z) = \prod_{j=1}^{n-k} (z - z_j)$ with $|z_0| = 1$, and $|z_j| \leq 1$, $z_j \neq z_0$ $(j = 1, \dots, n-k)$. Then at least one zero of $P^{(\nu)}(z)$ $(1 \leq \nu \leq n-1)$ lies in the disk $$\left|z-\frac{k}{\nu+1}z_{\scriptscriptstyle 0}\right| \leq 1-\frac{k}{\nu+1}.$$ For $\nu > k$, strict inequality will hold in (2.1) except when $\nu = n-1$ and $P(z) = (z-z_0)^k (z-z_1)^{n-k}$ with $|z_0| = |z_1| = 1$. REMARK. The conjectured result of Goodman, Rahman and Ratti [2] for zeros on the boundary is included in Theorem 1 as a special case when $k=1, \nu=1$. *Proof.* Without loss of generality, we may assume $z_0 = 1$, $\nu \ge k$. Then we easily have $$\frac{p^{(\nu+1)}(1)}{p^{(\nu)}(1)} = \frac{\nu+1}{\nu-k+1} \cdot \frac{Q^{(\nu-k+1)}(1)}{Q^{(\nu-k)}(1)}.$$ Denoting the zeros of $P^{(\nu)}(z)$ by $\zeta_1, \dots, \zeta_{n-\nu}$ and those of $Q^{(\nu-k)}(z)$ by $w_1, \dots, w_{n-\nu}$, we have from (2.2) $$\operatorname{Re} \sum_{j=1}^{n- u} \frac{1}{1-\zeta_j} = \frac{ u+1}{ u-k+1} \operatorname{Re} \sum_{j=1}^{n- u} \frac{1}{1-w_j}.$$ Since by Gauss-Lucas theorem we have $|w_j| \leq 1$, it follows that $$\operatorname{Re}\,(1\,-\,w_{\scriptscriptstyle j})^{\scriptscriptstyle -1} \geqq \frac{1}{2}$$ for all j. Thus (2.3) $$\frac{1}{n-\nu} \sum_{j=1}^{n-\nu} \operatorname{Re} \frac{1}{1-\zeta_{i}} \ge \frac{1}{2} \cdot \frac{\nu+1}{\nu-k+1} ,$$ so that (2.4) $$\max_{j} \operatorname{Re} (1 - \zeta_{j})^{-1} \ge \frac{1}{2} \cdot \frac{\nu + 1}{\nu - k + 1}$$ which is equivalent to (2.1). In (2.3), strict inequality will hold unless all the zeros of $Q^{(\nu-k)}(z)$ lie on the unit circle. This can happen only if $z_1=z_2=\cdots=z_{n-k}$ and $|z_1|=1$. For suppose $Q^{(\nu-k)}(z)$ has p distinct zeros w_1,\cdots,w_p with multiplicities m_1,\cdots,m_p . Then by the Gauss-Lucas theorem Q(z) must have the same zeros with multiplicities $m_1+\nu-k,\cdots,m_p+\nu-k$ so that the degree of Q(z) will be $n-\nu+p(\nu-k)=n-k$. Hence p=1, i.e., $Q^{(\nu-k)}(z)=(z-w_1)^{n-\nu}$ and so $w_1=z_1$ and $Q(z)=(z-z_1)^{n-k}$. Thus $P(z)=(z-1)^k(z-z_1)^{n-k}$ and so all zeros of $P^{(\nu)}(z)$ must lie on the line segment connecting z_1 and 1. Strict inequality will hold in (2.4) unless $$\left|\zeta_{j}-\frac{k}{\nu+1}\right|=\frac{\nu-k+1}{\nu+1}, \quad j=1, \dots, n-\nu,$$ so that $\zeta_1 = \zeta_2 = \cdots = \zeta_{n-\nu} = (k/(\nu+1) + (\nu-k+1)/(\nu+1))z_1$. Since the centroid of the zeros of polynomial is invariant under differentiation, we must also have $$\zeta_1 = \frac{k + (n - k)z_1}{n} = \frac{k}{\nu + 1} + \frac{\nu + k + 1}{\nu + 1}z_1$$, so that $\nu = n - 1$, which proves the assertion. Taking $P_a(z)=(z-1)(z^2-2az+1)$ with $-1/2 \le a \le 1$, we see that the zeros of $P'_a(z)$ fill the entire circumference of the circle |z-1/2|=1/2, so that for $\nu=k=1$, the result (2.1) cannot be improved. 3. Some lemmas. If the polynomial $P(z)=(z-z_0)^kQ(z), Q(z)=\prod_{j=1}^{n-k}(z-z_j), z_0\neq z_j, j=1,\cdots,n-k$, then as in (2.2), we have for $\nu \geq k \quad (\text{if} \quad P^{(\nu)}(z_0) \neq 0),$ $$\frac{P^{(\nu+1)}(z_0)}{P^{(\nu)}(z_0)} = \frac{\nu+1}{\nu-k+1} \cdot \frac{Q^{(\nu-k+1)}(z_0)}{Q^{(\nu-k)}(z_0)}.$$ Denoting the zeros of $P^{(\nu)}(z)$ by $\zeta_1, \dots, \zeta_{n-\nu}$ and of $Q^{(\nu-k)}(z)$ by $w_1, \dots, w_{n-\nu}$ and setting $$|z_0-w_j|=r_j, |z_0-\zeta_j|= ho_j, j=1,\,\cdots,\,n- u,$$ $(r_1\leqq r_2\leqq\cdots\leqq r_{n- u}; ho_1\leqq ho_2\leqq\cdots\leqq ho_{n- u})$ we have (3.2) $$\sum_{j=1}^{n-\nu} \frac{1}{z_0 - \zeta_j} = \frac{\nu + 1}{\nu - k + 1} \sum_{j=1}^{n-\nu} \frac{1}{z_0 - w_j}.$$ (3.3) $$\prod_{j=1}^{n-\nu} r_j = \frac{\binom{n}{k}}{\binom{\nu}{k}} \prod_{j=1}^{n-\nu} \rho_j,$$ where the last relation follows from the fact that $$egin{aligned} P^{(u)}(z_{\scriptscriptstyle 0}) &= \left(egin{aligned} n \ u \end{aligned} ight) u! \prod_{j=1}^{n- u} (z_{\scriptscriptstyle 0} - \zeta_{\scriptscriptstyle j}) \ &= \left(egin{aligned} n-k \ u-k \end{matrix} ight) u! \prod_{j=1}^{n- u} (z_{\scriptscriptstyle 0} - w_{\scriptscriptstyle j}) \;. \end{aligned}$$ In the sequel we shall need the following lemmas. Lemma 1. Let $f(z) = \sum_{j=0}^n \binom{n}{j} a_j z^j$, $g(z) = \sum_{j=0}^n \binom{n}{j} b_j z^j$, $h(z) = \sum_{j=0}^n \binom{n}{j} a_j b_j z^j$, and suppose that the zeros of f(z) lie in the annulus $p \leq |z| \leq q$, and those of g(z) lie in $r \leq |z| \leq s$, then the zeros of h(z) lie in $pr \leq |z| \leq qs$. This lemma is a special case of a theorem due to Szego [4; p. 65, Th. 16.1]. In particular if R(t) is a polynomial of degree n-k, and $f(t) = d^{\nu}/dt^{\nu}\{t^kR(t)\}$ and $h(t) = R^{(\nu-k)}(t)(\nu \ge k)$, then an easy computation shows that the polynomial g(t) of the above lemma may be chosen, except for a constant factor, as follows: $$g(t) = \sum_{j=0}^{n-\nu} \frac{\binom{n-\nu}{j}\binom{n}{k}}{\binom{\nu+j}{k}} t^j.$$ LEMMA 2. Let r_1, \dots, r_m and a, b, c ($a^m \leq c \leq b^m$) be positive numbers satisfying $$(3.4) a \leq r_i \leq b$$ Then (3.6) $$\sum_{j=1}^{m} \frac{1}{r_{j}^{2}} \leq \frac{m-\mu}{a^{2}} + \frac{\mu-1}{b^{2}} + \left(\frac{a^{m-\mu}b^{\mu-1}}{c}\right)^{2}$$ where (3.7) $$\mu = \min \left\{ \nu \mid b^{\nu} a^{m-\nu} \geq c, \nu \text{ integer} \right\}.$$ *Proof.* We first observed that the maximum of $\sum_{l}^{m} r_{j}^{-2}$ is not attained unless equality holds in (3.5) for if $\prod_{j=1}^{m} r_{j} > c$, then at least one of the r_{j} 's say r_{1} is strictly greater than a and so replacing it by $(1-\varepsilon)\cdot r_{1}$ with a suitable ε , we can increase the sum $\sum r_{j}^{-2}$. Also at most one of the r_j 's can lie in the open interval (a,b). For if we had for some i and j, $a < r_i \le r_j < b$, then replacing r_i by $r_i/1 + \varepsilon$, and r_j by $r_j/1 + \varepsilon$ with suitable ε , such that (3.4) and (3.5) remain valid, the sum $\sum r_j^{-2}$ would be increased by $$rac{(1+arepsilon)^2-1}{r_i^2}+ rac{(1+arepsilon)^{-2}-1}{r_i^2}$$ which is strictly positive. So to maximize $\sum r_j^{-2}$, we must have $$r_1 = r_2 = \cdots = r_{m-\nu} = a \le r_{m-\nu+1} \le r_{m-\nu+2} = \cdots = r_m = b$$ so that from $a^{mu}r_{mu+1}b^{ u-1}=c$ we obtain $$a^{m-\nu+1}\!\cdot\!b^{ u-1} < c \leqq a^{m- u}b^{ u}$$ which gives (3.7). Lemma 3. Let $0 < \alpha \le 1$ and suppose w is a point in the closed unit disk. Then (3.8) $$\operatorname{Re} \frac{1}{\alpha - w} \ge \frac{1}{2\alpha} - \frac{1 - \alpha^2}{2\alpha} \cdot \frac{1}{r^2}, \quad r = |\alpha - w|.$$ The proof follows from elementary geometric considerations. 4. Zeros inside the disk. We shall prove the theorems: THEOREM 2. If $P(z)=(z-z_0)^kQ(z), \ (k\geq 1,\ n\geq 2+k),\ |z_0|\leq 1,\ Q(z)=\prod_1^{n-k}(z-z_j),\ z_j\neq z_0,\ |z_j|\leq 1\ (j=1,\ \cdots,\ n-k),\ \ then\ \ at\ \ least\ one\ \ zero\ \ of\ \ P^{(n-2)}(z)\ \ lies\ \ in\ \ the\ \ closed\ \ disk$ $$|z-z_{\scriptscriptstyle 0}| \leq \frac{2(n-k-1)}{n-1} \sqrt{\frac{n-1+|z_{\scriptscriptstyle 0}|}{n}} .$$ REMARKS. (i) When n=3, k=1, the theorem asserts the existence of a zero of P'(z) in $|z-z_0| \le \sqrt{2+|z_0|/3}$ which implies the Ilyeff's conjecture in this case. A comparison of (4.1) with (2.1) in the special case n=4, k=1, $\nu=2$ and $z_0=1$ shows that Theorem 1 asserts the existence of a zero of P''(z) in $|z-1/3| \le 2/3$, while (4.1) does so in the disk $|z-1| \le 4/3$. However, Theorem 2 holds even when $|z_0| < 1$. (ii) Under the hypothesis of Theorem 2, it is possible to replace the right side of (4.1) by $$\frac{n-k-1}{n-1}\theta(z_0)$$ where $\theta(z_0) = |z_0| + \sqrt{2 - |z_0|^2}$, which for large values of *n* yields a disk smaller than the one given by (4.1). *Proof.* Without loss of generality, we may take $z_0 = \alpha$, $0 \le \alpha \le 1$. Setting in Lemma 1, $f(t) = P^{(n-2)}(\alpha + t) = (d^{n-2}/dt^{n-2})(t^kQ(\alpha + t))$ and $h(t) = Q^{(n-2-k)}(\alpha + t)$, we have by (3.3a) $$g(t) = t^2 + \frac{2n}{n-k}t + \frac{n(n-1)}{(n-k-1)(n-k)}$$. For the zeros β_1 and β_2 of g(t), we have $$|\beta_{\scriptscriptstyle 1}|^2 = |\beta_{\scriptscriptstyle 2}|^2 = rac{n(n-1)}{(n-k)(n-k-1)}$$. Assuming that $\rho_1 \leq \rho_2$ and $r_1 \leq r_2$ (see notation proceeding (3.2)) we have by Lemma 1, (4.2) $$\rho_1 \sqrt{\frac{n(n-1)}{(n-k)(n-k-1)}} \le r_1 \le r_2 ,$$ whence $$\frac{1}{r_1^2} + \frac{1}{r_2^2} \le \frac{(n-k)(n-k-1)}{n(n-1)} \frac{2}{\rho_1^2}$$. Suppose now the theorem is false. Then $$(4.3) \qquad \qquad \rho_{\scriptscriptstyle 2} \geq \rho_{\scriptscriptstyle 1} > \frac{2(n-k-1)}{n-1} \sqrt{\frac{n-1+\alpha}{n}} \; ,$$ and thus $$\frac{1}{r_1^2} + \frac{1}{r_2^2} < \frac{1}{2} \frac{(n-1)(n-k)}{(n-k-1)(n-1+\alpha)}.$$ Also from (4.3) and (4.2) and from $n-k \ge 2$, we have $r_1 > 1$, which for $\alpha = 0$ yields the desired contradiction. If $\alpha \neq 0$ then from (3.2), (4.4) and Lemma 3 we get $$\frac{1}{2} \operatorname{Re} \sum_{j=1}^{2} \frac{1}{\alpha - \zeta_{j}} \\ > \frac{n-1}{2(n-k-1)} \left\{ \frac{1}{\alpha} - \frac{1-\alpha^{2}}{4\alpha} \cdot \frac{(n-1)(n-k)}{(n-k-1)(n-1+\alpha)} \right\} \\ (4.5) \quad \geqq \frac{n-1}{2(n-k-1)} \cdot \frac{1}{2\alpha} \left\{ 2 - \frac{(1-\alpha^{2})(n-1)}{n-1+\alpha} \right\} \\ > \frac{n-1}{4\alpha(n-k-1)} \left\{ 1 + \alpha^{2} \cdot \frac{n}{n-1+\alpha} \right\} \\ \geqq \frac{n-1}{2(n-k-1)} \sqrt{\frac{n}{n-1+\alpha}} ,$$ observing that $n-k \le 2(n-k-1)$. Since $1/\rho_j \ge \text{Re } 1/\alpha - \zeta_j$, j=1,2, (4.5) yields a contradiction to (4.3) which completes the proof of the theorem. THEOREM 3. Suppose $P(z) = (z-z_0)^k Q(z)$, $(k \ge 1, 2k \le n-2)$, $|z_0| \le 1$, $Q(z) = \prod_{j=1}^{n-k} (z-z_j)$, $z_j \ne z_0$, $|z_0| \le 1$ $(j=1, \dots, n-k)$. Then at least one zero of $P^{(n-3)}(z)$ lies in the disk $$|z - z_0| \le \frac{(n - k - 2)}{n - 2} \theta(z_0)$$ where $\theta(z_0) = |z_0| + \sqrt{2 - |z_0|^2}$. REMARK. (i) In the special case n=4, k=1, the above theorem gives an improvement on Theorem 2 of [5], since it guarantees the existence of a zero of P'(z) in $|z-z_0| \le 1/2(|z_0|+\sqrt{2-|z_0|^2}) < 1$ if $|z_0| \ne 1$. (ii) In case 2k > n-2, $n \ge k+3$ we can prove that under the conditions of Theorem 3, the disk $|z-z_0| \le (n-k-1/n-1)\theta(z_0)$ will contain at least one zero of $P^{(n-3)}(z)$. In particular the disk $$|z-z_{\scriptscriptstyle 0}| \leqq rac{1}{2} heta(z_{\scriptscriptstyle 0}) \leqq 1$$ will include at least one zero of $P^{(n-3)}(z)$ when $$k> rac{n-2}{2}$$. *Proof.* As in Theorem 2, we set $z_0 = \alpha$, $0 \le \alpha \le 1$ and identify the polynomials f(t), g(t) and h(t) of Lemma 1, as follows: $$f(t) \equiv P^{(n-3)}(\alpha + t), h(t) = Q^{(n-3-k)}(\alpha + t),$$ and except for a constant factor $$g(t) = \sum_{j=0}^{3} {n \choose j} {3 \choose j} t^{3-j} / {n-k \choose j}$$. Since g'(t) > 0 for real t, it follows that g(t) has exactly one real zero. A straightforward substitution yields $$g\left(-\frac{n}{n-k-1}\right) \le 0 \le g\left(\frac{n-2}{n-k-2}\right)$$ on using the assumption $2k \le n-2$. So denoting the zeros of g(t) by t_1, t_2, t_3 then for the real zero, say t_3 , we have $$rac{n-2}{n-k-2} \leq |t_3| \leq rac{n}{n-k-1}$$. Since $\overline{t}_2=t_1$, and $|t_1t_2t_3|=|t_1|^2|t_3|={n\choose 3}/{n-k\choose 3}$, we obtain $$egin{aligned} & rac{(n-1)(n-2)}{(n-k)(n-k-2)} \le |t_1|^2 \ & \le rac{n(n-1)}{(n-k)(n-k-1)} \le \left(rac{n-2}{n-k-2} ight)^2 \le |t_3|^2 \;. \end{aligned}$$ Now by Lemma 1 (using the notation of §3) (4.7) $$\rho_1^2 \frac{(n-1)(n-2)}{(n-k)(n-k-2)} \le r_1^2 \le r_2^2 \le r_3^2.$$ Suppose the theorem were not true, i.e., $$(4.8) \rho_{\scriptscriptstyle 1} > \frac{n-k-2}{n-\alpha} (\alpha + \sqrt{2-\alpha^2}).$$ Then for all α , $\rho_1 > (n-k-2/n-2)\sqrt{2}$ which would imply that (4.9) $$r_1^2 > 2 \cdot \frac{(n-1)(n-k-2)}{(n-2)(n-k)} \ge 1.$$ For $\alpha = 0$, this already gives a contradiction. If $0 < \alpha \le 1$, then from (3.2) with $\nu = n - 3$, from (4.7), and (4.8) and Lemma 3 we have $$\frac{1}{3} \operatorname{Re} \sum_{j=1}^{3} \frac{1}{\alpha - \zeta_{j}} = \frac{1}{3} \frac{n-2}{(n-k-2)} \operatorname{Re} \sum_{j=1}^{3} \frac{1}{\alpha - w_{j}}$$ $$> \frac{n-2}{n-k-2} \cdot \left[\frac{1}{2\alpha} - \frac{1-\alpha^2}{2\alpha} \cdot \frac{(n-k)(n-2)}{(n-1)(n-k-2)} \frac{1}{\theta^2(\alpha)} \right].$$ Since $(n-k)(n-2) \le 2(n-1)(n-k-2)$ and $|\operatorname{Re}(\alpha-\zeta_j)^{-1}| \le 1/\rho_j$, we have $$egin{aligned} rac{1}{3}\sum_{j=1}^3 rac{1}{ ho_j} &> rac{n-2}{2(n-k-2)}\Big\{ rac{1}{lpha}\Big(1- rac{2}{ heta^2}\Big)+ rac{2lpha}{ heta^2}\Big\}\ &\geqq rac{n-2}{(n-k-2)}\cdot rac{1}{ heta}\;. \end{aligned}$$ Therefore $$ho_{\scriptscriptstyle 1} < rac{n-k-2}{n-2} heta$$ which contradicts (4.8). This completes the proof of Theorem 3. # 5. Quintic polynomials. We shall prove the THEOREM 4. If $P(z)=(z-z_0)Q(z)$, $Q(z)=\prod_1^4(z-z_j)$, $|z_j|\leq 1$ $(j=0,1,\cdots,4)$, then at least one zero of P'(z) lies in the disk $$|z-z_{\scriptscriptstyle 0}| \leq \frac{1}{2} \sqrt{2-|z_{\scriptscriptstyle 0}|^2} \; .$$ REMARK. This in particular proves Ilyeff's conjecture for quintics since the right side of (5.1) is < 1 if $|z_0| < 1$. *Proof.* Without loss of generality we may assume $z_0 \neq z_j$ $(j=1,\cdots,4)$ and $0 \leq z_0 \leq 1$. From (3.3) with n = 5, $\nu = 1$, we have $$(5.2) r_1 r_2 r_3 r_4 = 5 \rho_1 \rho_2 \rho_3 \rho_4 .$$ Now identifying in Lemma 1, f(t) with $P'(z_0 + t)$, h(t) with $Q(z_0 + t)$, g(t) becomes, except for a constant factor, the polynomial $$t^{-1}[(1+t)^5-1]$$ whose zeros t_1 , t_2 , t_3 , t_4 satisfy $$|t_1|^2 = |t_2|^2 = 4\sin^2\frac{\pi}{5}, \ |t_3|^2 = |t^4|^2 = 4\sin^2\frac{2\pi}{5}$$ and $t_1t_2t_3t_4=5$. It follows then from Lemma 1 that $$(5.3) \rho_1 \cdot |t_1| \leq r_j \leq \rho_4 \cdot |t_4| , (j = 1, \dots, 4) .$$ From Lemma 2, (5.2) and (5.3) we conclude that $\sum_{j=1}^{4} r_j^{-2}$ cannot be larger than the corresponding expression for $$r_{\scriptscriptstyle 1}' = r_{\scriptscriptstyle 2}' = |\,t_{\scriptscriptstyle 1}|\, ho_{\scriptscriptstyle 1},\, r_{\scriptscriptstyle 3}' = rac{ ho_{\scriptscriptstyle 2} ho_{\scriptscriptstyle 3}}{ ho_{\scriptscriptstyle 1}}\,|\,t_{\scriptscriptstyle 4}|,\, r_{\scriptscriptstyle 4}' = |\,t_{\scriptscriptstyle 4}|\, ho_{\scriptscriptstyle 4}$$. Thus on using $\rho_1 \le \rho_2 \le \rho_3 \le \rho_4$ and $|t_1|^{-2} + |t_4|^{-2} = 1$, we have (5.4) $$\sum_{j=1}^4 r_j^{-2} \leqq \sum_{j=1}^4 r'^{-2} \leqq 2\rho_1^{-2} .$$ If $z_0 \neq 0$, then on using Lemma 3 and (3.2) with $k = 1, \nu = 1, n = 5$, we have from (5.4) $$rac{4}{ ho_{\scriptscriptstyle 1}} \ge { m Re} \sum_{\scriptscriptstyle j=1}^4 rac{1}{z_{\scriptscriptstyle 0} - \zeta_{\scriptscriptstyle j}} \ge 2 \Bigl\{ rac{2}{z_{\scriptscriptstyle 0}} - rac{1 - z_{\scriptscriptstyle 0}^2}{2z_{\scriptscriptstyle 0}} \cdot rac{2}{ ho_{\scriptscriptstyle 1}^2} \Bigr\} \ ,$$ from which the result follows by elementary calculation. If $z_0=0$, then $r_j \leq 1$ $(j=1,\,2,\,3,\,4)$ and so by (5.2) $\rho_1 \leq 5^{-(1/4)} < 2^{-(1/2)}$. This completes the proof. #### REFERENCES - 1. D. A. Brauman, On a conjecture of Ilyeff, Proc. Camb. Philo. Soc. 64 (1968), 83-85. - 2. A. W. Goodman, Q. I. Rahman, and J. S. Ratti, On the zeros of a polynomial and its derivative, Abstract 653-216, Amer. Math. Soc. Notices 15 (1968), 141. - 3. W. K. Hayman, Research problems in function theory, Athlone Press, London, 1967. - 4. M. Marden, Geometry of polynomials, Amer. Math. Soc. Math. Surveys 3 (1966). - 5. Z. Rubinstein, On a problem of Ilyeff, Pacific J. Math. 26 (1968), 159-161. Received December 20, 1968. University of Alberta Edmonton, Alberta Canada ## PACIFIC JOURNAL OF MATHEMATICS #### **EDITORS** H. ROYDEN Stanford University Stanford, California RICHARD PIERCE University of Washington Seattle, Washington 98105 J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007 BASIL GORDON University of California Los Angeles, California 90024 #### ASSOCIATE EDITORS E. F. BECKENBACH B. H. NEUMANN F. Wolf K. Yoshida #### SUPPORTING INSTITUTIONS UNIVERSITY OF BRITISH COLUMBIA CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF CALIFORNIA MONTANA STATE UNIVERSITY UNIVERSITY OF NEVADA NEW MEXICO STATE UNIVERSITY OREGON STATE UNIVERSITY UNIVERSITY OF OREGON OSAKA UNIVERSITY UNIVERSITY OF SOUTHERN CALIFORNIA STANFORD UNIVERSITY UNIVERSITY OF TOKYO UNIVERSITY OF UTAH WASHINGTON STATE UNIVERSITY UNIVERSITY OF WASHINGTON AMERICAN MATHEMATICAL SOCIETY CHEVRON RESEARCH CORPORATION TRW SYSTEMS NAVAL WEAPONS CENTER The Supporting Institutions listed above contribute to the cost of publication of this Journal, but they are not owners or publishers and have no responsibility for its content or policies. Mathematical papers intended for publication in the Pacific Journal of Mathematics should be in typed form or offset-reproduced, double spaced with large margins. Underline Greek letters in red, German in green, and script in blue. The first paragraph or two must be capable of being used separately as a synopsis of the entire paper. It should not contain references to the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four editors. Please classify according to the scheme of Math. Rev. 36, 1539-1546. All other communications to the editors should be addressed to the managing editor, Richard Arens, University of California, Los Angeles, California, 90024. 50 reprints are provided free for each article; additional copies may be obtained at cost in multiples of 50. The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the price per volume (3 numbers) is \$8.00; single issues, \$3.00. Special price for current issues to individual faculty members of supporting institutions and to individual members of the American Mathematical Society: \$4.00 per volume; single issues \$1.50. Back numbers are available. Subscriptions, orders for back numbers, and changes of address should be sent to Pacific Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708. PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17, Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan. # **Pacific Journal of Mathematics** Vol. 31, No. 2 December, 1969 | Efraim Pacillas Armendariz, Quasi-injective modules and stable torsion | 277 | |--|------------| | classes | 277
281 | | Vasily Cateforis and Francis Louis Sandomierski, <i>On commutative rings over</i> | 201 | | which the singular submodule is a direct summand for every module | 289 | | Rafael Van Severen Chacon, Approximation of transformations with continuous | 209 | | spectrum | 293 | | Raymond Frank Dickman and Alan Zame, Functionally compact spaces | 303 | | Royald George Douglas and Walter Rudin, Approximation by inner | 303 | | functions | 313 | | John Walter Duke, A note on the similarity of matrix and its conjugate | 313 | | transpose | 321 | | Micheal Neal Dyer and Allan John Sieradski, <i>Coverings of mapping</i> | 321 | | spaces | 325 | | Donald Campbell Dykes, Weakly hypercentral subgroups of finite groups | 337 | | Nancy Dykes, Mappings and realcompact spaces | 347 | | Edmund H. Feller and Richard Laham Gantos, <i>Completely injective</i> | 341 | | semigroups | 359 | | Irving Leonard Glicksberg, Semi-square-summable Fourier-Stieltjes | 337 | | transforms | 367 | | Samuel Irving Goldberg and Kentaro Yano, <i>Integrability of almost</i> | 307 | | cosymplectic structures | 373 | | Seymour Haber and Charles Freeman Osgood, <i>On the sum</i> $\sum \langle n\alpha \rangle^{-1}$ <i>and</i> | | | numerical integration | 383 | | Sav Roman Harasymiv, <i>Dilations of rapidly decreasing functions</i> | 395 | | William Leonard Harkness and R. Shantaram, Convergence of a sequence of | | | transformations of distribution functions | 403 | | Herbert Frederick Kreimer, Jr., A note on the outer Galois theory of rings | 417 | | James Donald Kuelbs, Abstract Wiener spaces and applications to | | | analysis | 433 | | Roland Edwin Larson, <i>Minimal T</i> ₀ -spaces and minimal T_D -spaces | 451 | | A. Meir and Ambikeshwar Sharma, <i>On Ilyeff's conjecture</i> | 459 | | Isaac Namioka and Robert Ralph Phelps, Tensor products of compact convex | | | sets | 469 | | James L. Rovnyak, On the theory of unbounded Toeplitz operators | 481 | | Benjamin L. Schwartz, <i>Infinite self-interchange graphs</i> | 497 | | George Szeto, On the Brauer splitting theorem | 505 | | Takayuki Tamura, Semigroups satisfying identity $xy = f(x, y)$ | 513 | | Kenneth Tolo, Factorizable semigroups | 523 | | Mineko Watanabe, On a boundary property of principal functions. | 537 | | James Juei-Chin Yeh, Singularity of Gaussian measures in function spaces with | -331 | | factorable covariance functions | 547 | | J | |