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This paper presents a proof for the Brauer splitting
theorem in the context of a commutative ring with no idem-
potents except 0 and 1 and continues this investigation. The
main results in this paper are the Brauer splitting theorem
and the classification of all finitely generated projective in-
decomposable modules over a separable group algebra.

Throughout this paper we assume that the ring R is a commuta-
tive ring with no idempotents except 0 and 1, that the group G has
order n invertible in R, and that all iϋG-modules are unitary left RG-
modules. We know that the order of G, n, is invertible in R if and
only if RG is separable.

1* First, let us recall the following Brauer splitting theorem:
Let if be a field and G be a group of order n invertible in K, then

~Γ) is a splitting field for G, where m is the exponent of G and
is a primitive mth-root of 1 ([6], Th. 41-1, p. 292 and Corollary

70-24, p. 475). In [8], G. J. Janusz defined a ring R to be a splitting
ring for G if the group algebra RG is the direct sum of central
separable iϋ-algebras each equivalent to R in the Brauer group of R;
that is, RG ^ 0 Σ U Hom^ (Pif P )̂, where {PJ are finitely generated
projective faithful j?-modules, the number of different conjugate classes
in G is equal to s. He then proved the Brauer splitting theorem for
a Noetherian regular domain, R. This section gives a proof for the
above theorem when R is any commutative ring with no idempotents
except 0 and 1.

LEMMA 1. Let Ro be a subrίng of R. If Ro is a splitting ring
for G, then R is a splitting ring for G.

Proof. Because Ro is a splitting ring for G, R0G = 0 Σf=i Homi?0

(P^ P^ where {PJ are finitely generated projective faithful i?0-modules.
Then we have

RG~R <g>Λo RQG ~ R ®Λ o ( θ Σ HomΛo (P,,

s 0 Σ R ®*o H o m *o ( ^ Pi) = θ Σ Horn* (R ®RQ Pi, R (g)^ P,) ,

where {JB®ΛoPJ are finitely generated projective faithful iZ-modules.
This follows since {PJ are finitely generated projective faithful RQ-
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modules ([1], Proposition 5-5). Thus R is a splitting ring for G.

THEOREM 2. If R is a commutative ring with no idempotents
except 0 and 1 and RG is a separable group algebra, then R[ tyT] is
a splitting ring for G where ^~\ is a primitive mih-root of 1.

Proof. Let Z be the set of integers, Q be the set of rationale.
The proof divides into two cases.

Case 1. The prime ring of R is finite. Let Char (R) — pe, where
p is a prime integer and e is in Z.

Z/(pe) is a local ring with the maximal ideal (p)j(pe) which is also
nilpotent. For (Z/(pe))[θ] where θ = vfΐ, we have

where θ is a primitive mth-root of 1 over ZJ(p). Now (Z/(p))(θ) is a
field; so {{p)l(pe))[θ\ is a maximal ideal. On the other hand, since
(p)/(pe) is nilpotent, ((p)l(pe))[θ] is also nilpotent. But then ((p)/(pe))[θ]
is an unique maximal ideal and a nilpotent ideal of (Z/(pe))[θ]. There-
fore, (Z/(pe))[θ] is a complete local ring where the completion is in the
sense of m-topology (see [9], p. 254). Then the Brauer group natural
map

is monomorphic ([1], Corollary 6-2). But (Z/(p))(θ) is a splitting field
for G; so (Z/(pe))[θ] is a splitting ring for G. Thus R[θ] is a splitting
ring for G by the lemma.

Case 2. The prime ring of R is Z(n) which is the quotient ring
of Z with respect to the multiplicative closed set {n, n2, •••}. Since
Z(n)[θ] is a Dedekind domain, it is Noetherian and regular. Then the
Brauer group natural map B{Z(n)[θ]) —> B(Q(Θ)) is monomorphic ([1],
Th. 7-2). But Q(θ) is the quotient field of Z(n)[θ] and a splitting
field for G by the Brauer splitting theorem. Therefore, Z(n)[θ] is a
splitting ring for G and so R[^~ΐ] is a splitting ring for G by the
lemma. By combining Cases 1 and 2, the theorem is proved.

REMARK. The above theorem tells us the existence of a splitting
ring, R[\/~ΐ]1 for G, if RG is a separable group algebra. We also
know that R[ ΛΠΓ] is a finitely generated protective and separable R-
algebra ([8], Corollary 2-4). But there exists a central separable R-
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algebra without a finitely generated protective and separable splitting
ring. The following example is due to 0. Goldman: Letiί be 2Γ[i/~2~], hθ\ k
be the usual quaternion basis. If a — (1 + i)/ι/ΊΓ and β — (1 4- j)/\/~2,
then Rl 0 Ra 0 Rβ 0 Jξα/3 is central separable over R. But iϋ has no
finitely generated protective and separable extension except direct sums
of copies of R, and Rl 0 Ra 0 Rβ 0 Raβ cannot be split.

2* In this section, assume RG is a split group algebra,

Horn,, (P., P.) , ΐ = 1, 2, , s .

When {PJ are considered as ϋ!G-modules ([3], p. 5), the classification
of all finitely generated protective indecomposable i?G-modules can be
obtained. Observe that the order of the group G, n, is invertible in
R if and only if RG is separable. Therefore, any iϊG-module M is
finitely generated and projective over RG if and only if M is finitely
generated and projective over R (see the proof of Proposition 1-5 in [8]).

Let RG be a separable i?-algebra and M be a finitely generated
projective iϋG-module; for any x in M there exist X19 X2, Xq in M
and Flf Fz, , Fq in HomA> (M, R) so that x - Σ?=i Fi(x)Xi- We call
{F<, Xt , i = 1, 2, , q) a J?-dual basis of M, and ^(a;) = Σ?=i F&Xi)
the character of ikf at a; in i2G ([4], Proposition 3-1). By a group
character we mean the restriction of TM to G. Obviously, a character
TM is completely determined by its restriction to G. In particular, let
R be a splitting ring for G; then

- 0 Σ Horn,, (Pif P ^

where £7̂  is the ith-central primitive idempotent of βG. We let

T i HP

= ^p*

PROPOSITION 3. // M and N are two isomorphic finitely generated
projective RG-modules, then they have the same characters.

Proof. Let M and N be two isomorphic finitely generated projec-
tive i?G-modules and let a be the isomorphism. If {Fi9 Xi9 i = 1, 2,
•••,#} is a dual basis of M, then we claim that {F{a~l, aXiy i = 1, 2,
• , g} is a dual basis of JV. In fact, for any a in N, there exists 6
in M such that α(δ) — a; so

o = a(± F^xS) = Σ
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This means that {FiOr1, aXif i = 1, 2, , q) is a dual basis of N. But
the character of any finitely generated projective iϋ(?-module is in-
dependent of the dual basis chosen; so TN{g) = Σ* FiO
ΣiFiOΓ^agXi), (for a is a iϋG-isomorphism), and so = Σ*
TM{g).

The following proposition will play an important role in our dis-
cussion.

PROPOSITION 4. If N is a finitely generated projective faithful
R-module and M a finitely generated projective left HomΛ (Nf N)-
module, then M ~ N §§R N' with Nr a finitely generated projective
R-module.

Proof. By the Morita Theorem on p. 9 in [3].

REMARK. Proposition 4 gives a counter-example to the converse
statement of Proposition 3. Because of Proposition 4, let M and N
be two finitely generated projective indecomposable iϋG-modules over
the same central component of the split group algebra RG; that is,
Horn,, (Pίf P,), then M = P4 <g)Λ N' and N^P^x N", where iV' and
N" are finitely generated projective indecomposable β-modules. Sup-
pose N' and N" are in P(R), the class group of R, then

ί l )= TP{(g)Ί = Ts(g) .

But Pi <&R N' s Pt <S>R N" only if N' = N".

LEMMA 5. If RG is a split group algebra; that is,

s s

then

Q n

where g is in G, h = rank (P )̂ α^d Γ4 = TP..

Proof. Since

i2G s 0 :£ (J?G)JS?i ̂  0 έ Horn R (P,, P,), ̂  = Σ

for all g in G, ̂ (β^) in R. We then have
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for some h in G. Taking the character afforded by RG, we have

ih-1) = ΣEi(9)TRβ{ghrι) .

But TRG(gh~ι) = 0 in case gh~ι Φ 1, and = n in case gh~ι = 1 or g — h.
Hence TRG(Eihrl) = Ei(h)n,Ei(h) = TRG{Eih~ι)ln (for n is invertible in R).

Next, we find TRQ(Eihrι). Because P* is a finitely generated
projective iϋ-module, Hom^ (P f, Ptf) = P^ 0 Λ Hom^ (P t , JB) ([3], Morita
Theorem I). Noting that rank (PJ = rank (Homβ (P^ R)), we have

for all ΐ = 1, 2, , s .

Therefore,

But Tj(EJι~ι) = 0 in case i ^ i, so

T

Hence,

By substituting !?;(/&) in ^ , we have

- Σ MΣ (rt Σ

This completes the proof.

LEMMA 6. For i = 1, 2, , s, rank (P^ is neither 0 wor α
divisor in R.

Proof. First, rank (P^) is not 0, otherwise 2^ is 0 by Lemma 5.
This is impossible.

Next, let rank (P{) be kiy and suppose that k{ is a zero divisor in
iϋ. We then have a nonzero element, k% in J? such that k'k — 0. But
by Lemma 5,

% i 2a »

9 n

so,

k'Ei = k% Σ ng~i)g = (fc'*4) Σ
 r ( g " 1 ) g = o .

n n
( ) Σ

n 9 n



510 G. SZETO

Noting that (RG)Ei = HomΛ (P., P.), we have

k' Horn,, (P., P{) = kf{RG)Ei = k'E^RG) = 0 .

On the other hand, P { is a faithful i?-module; so Hom^ (Pi9 Pζ) is a
faithful i2-module. Therefore, k' Horn,, (P., P.) = 0 implies kr = 0.
This is a contradiction. Thus we have proved that ki is not a zero
divisor in R.

THEOREM 7, Suppose R is a splitting ring for G and all finitely
generated protective indecomposable R-modules are of rank 1. Then
for any two finitely generated protective indecomposable RG-modules
M and N, we have EM Φ 0 and EiN Φ 0 if and only if TM(g) =
TN(g) for all g in G, where E{ is the ith-central primitive idempotent
of RG.

Proof. If EM Φ 0 and EiN Φ 0, then M ~ E,M® (1 - E,)M and
N ^ EiN © (1 - Ei)N. Since M and N are indecomposable, (1 - Eζ)M = 0
and (1 - Ei)N - 0. We have N = E{N and M = EM as left
HomjR(Pί,Pί)-modules. Therefore, by Proposition 4, M — P^xN' and
N ~ Pi (§)β iV" where N' and Λ̂ " are finitely generated projective
i?-modules. Since M and N are indecomposable i?G-modules, N' and
JVrr are in P{R). Therefore,

TM(g) = TPiΘRN,(g) = TP.(g)Λ

Conversely, if TM(g) = TN(g) for all g in G, then TM(a) = TN{a) for
all a in RG. Suppose EM Φ 0 and EζN = 0 for some i; then there
exists & j Φ i such that J^ iV ^ 0. Thus M i s a (i2G)£τ

rmodule and
N is a (i?G)£f

i-module, and so we have

TM(Ei) - T^E,) = TP%(L) - rank (PJ .

By Lemma 6, rank(P,) ̂  0 in i2, so Γ ^ ^ ) ̂  0. Obviously, TN(Ed = 0.
Thus T¥ ̂  ΓiV on RG. Consequently, TM(g) Φ TN(g) for some g in G.
This is a contradiction to TM(g) = TN(g) for all g in G, and hence the
proof is completed.

COROLLARY 8. If R is a splitting ring for G, and all finitely
generated projective indecomposable R-modules are of rank 1; then
there are exactly s-classes of finitely generated projective indecom-
posable RG-modules over different central components each uniquely
determined up to an element in P(R).

Proof. Let M be a finitely generated projective indecomposable
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iϋG-module. From the theorem, we have M — E{M = Pi ®R N' where
N' is in P(R). On the other hand, P{, i = 1, 2, « ,s, is a finitely
generated projective indecomposable iϋG-module over the ΐth-central
component. Therefore, there are exactly s-classes of finitely generated
projective indecomposable i2G-modules each uniquely determined up to
an element in P(R).

From the above result, we have computed the first Grothendieck
group of RG, K\RG), in the sense of [2], p. 31.

COROLLARY 9. If R is a splitting ring for G, then

K°(RG) = (Z@ P{R)) 0 (Z@P{R)) 0 0 (ZφP(R)) .

A natural question to ask is whether the classification of all
finitely generated projective indecomposable RG-modnles can be obtained
for a nonsplit group algebra. The answer is not known. But for some
special rings, we have a definite answer.

For a separable group algebra RG, we have the decomposition,
RG = 0 Σί=i Aίy where Aι has no proper central idempotents and t is
an integer.

THEOREM 10. If R is local or semi-local, then there are exactly
t-isomorphic classes of finitely generated projective indecomposable
RG-modules,

Proof. From the decomposition of RG, A{ is a central separable
CV-algebra for each Aif where C* is the center of Ai ([1], Th. 2-3).
Since R is local or semi-local, C* is semi-local by the lemma on p. 25
in [5] Therefore any two finitely generated projective indecomposable
jβG-modules over the ί^-component Ai are in an isomorphic class of
finitely generated projective indecomposable iϋG-modules ([7], Th. 1).

COROLLARY 11. If R is local or semi-local, then

K\RG) = Z®Z@---@Z ,

t-copies of Z.

This paper forms a part of the author's Doctoral Dissertation at
Purdue University written under the guidance of Professor F. R.
DeMeyer. The author wishes to thank Professor DeMeyer for his
guidance, criticism, and encouragement throughout this study.

The author wishes to thank the referee for many helpful suggestions.



512 G. SZETO

BIBLIOGRAPHY

1. M. Auslander and 0. Goldman, The Brauer group of a commutative ring, Trans.
Amer. Math Soc. 97 (1960), 367-409.
2. H. Bass, K-theory and stable algebra, Publ. Math. I.H.E.S. Paris, 22 (1964), 5-60.
3. , The Morita theorems, Mimeographed Notes, University of Oregon, 1964.
4. H. Cartan and S. Eilenberg, Homological algebra, Princeton, 1956.
5. L. N. Childs and F. R. DeMeyer, On automorphisms of separable algebras, Pacific
J. Math. 23 (1967), 25-34.
6. C. W. Curtis and I. Reiner, Representation theory of finite groups and associated
Algebras, New York, Interscience, 1962.
7. F. R. DeMeyer, Protective modules over central separable algebras, Canad. J. Math.
21 (1969), 39-43.
8. G. J. Janusz, Separable algebra over commutative rings, Trans. Amer. Math. Soc.
122 (1966), 461-479.
9. 0. Zariski and P. Samuel, Commutative algebra, Vol. 2, Princeton, D. Van Nostrand
Co., 1960.

Received October 14, 1968.

BRADLEY UNIVERSITY

PEORIA, ILLINOIS



PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. ROYDEN J. DUGUNDJI
Stanford University Department of Mathematics
Stanford, California University of Southern California

Los Angeles, California 90007

RICHARD PIERCE BASIL GORDON

University of Washington University of California
Seattle, Washington 98105 Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH B. H. NEUMANN F. WOLF K. YOSHIDA

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY
CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO
UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH
MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY
UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON
NEW MEXICO STATE UNIVERSITY * * *
OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY
UNIVERSITY OF OREGON CHEVRON RESEARCH CORPORATION
OSAKA UNIVERSITY TRW SYSTEMS
UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL WEAPONS CENTER

The Supporting Institutions listed above contribute to the cost of publication of this Journal,
but they are not owners or publishers and have no responsibility for its content or policies.

Mathematical papers intended for publication in the Pacific Journal of Mathematics should
be in typed form or offset-reproduced, double spaced with large margins. Underline Greek
letters in red, German in green, and script in blue. The first paragraph or two must be capable
of being used separately as a synopsis of the entire paper. It should not contain references to
the bibliography. Manuscripts, in duplicate if possible, may be sent to any one of the four
editors. Please classify according to the scheme of Math. Rev. 36, 1539-1546. All other
communications to the editors should be addressed to the managing editor, Richard Arens,
University of California, Los Angeles, California, 90024.

50 reprints are provided free for each article; additional copies may be obtained at cost in
multiples of 50.

The Pacific Journal of Mathematics is published monthly. Effective with Volume 16 the
price per volume (3 numbers) is $8.00; single issues, $3.00. Special price for current issues to
individual faculty members of supporting institutions and to individual members of the American
Mathematical Society: $4.00 per volume; single issues $1.50. Back numbers are available.

Subscriptions, orders for back numbers, and changes of address should be sent to Pacific
Journal of Mathematics, 103 Highland Boulevard, Berkeley, California, 94708.

PUBLISHED BY PACIFIC JOURNAL OF MATHEMATICS, A NON-PROFIT CORPORATION
Printed at Kokusai Bunken Insatsusha (International Academic Printing Co., Ltd.), 7-17,

Fujimi 2-chome, Chiyoda-ku, Tokyo, Japan.



Pacific Journal of Mathematics
Vol. 31, No. 2 December, 1969

Efraim Pacillas Armendariz, Quasi-injective modules and stable torsion
classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

J. Adrian (John) Bondy, On Ulam’s conjecture for separable graphs . . . . . . . . . . 281
Vasily Cateforis and Francis Louis Sandomierski, On commutative rings over

which the singular submodule is a direct summand for every module . . . . . 289
Rafael Van Severen Chacon, Approximation of transformations with continuous

spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Raymond Frank Dickman and Alan Zame, Functionally compact spaces . . . . . . 303
Ronald George Douglas and Walter Rudin, Approximation by inner

functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
John Walter Duke, A note on the similarity of matrix and its conjugate

transpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Micheal Neal Dyer and Allan John Sieradski, Coverings of mapping

spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
Donald Campbell Dykes, Weakly hypercentral subgroups of finite groups . . . . . 337
Nancy Dykes, Mappings and realcompact spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 347
Edmund H. Feller and Richard Laham Gantos, Completely injective

semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359
Irving Leonard Glicksberg, Semi-square-summable Fourier-Stieltjes

transforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367
Samuel Irving Goldberg and Kentaro Yano, Integrability of almost

cosymplectic structures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373
Seymour Haber and Charles Freeman Osgood, On the sum

∑
〈nα〉−t and

numerical integration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 383
Sav Roman Harasymiv, Dilations of rapidly decreasing functions . . . . . . . . . . . . 395
William Leonard Harkness and R. Shantaram, Convergence of a sequence of

transformations of distribution functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 403
Herbert Frederick Kreimer, Jr., A note on the outer Galois theory of rings . . . . . 417
James Donald Kuelbs, Abstract Wiener spaces and applications to

analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 433
Roland Edwin Larson, Minimal T0-spaces and minimal TD-spaces . . . . . . . . . . . 451
A. Meir and Ambikeshwar Sharma, On Ilyeff’s conjecture . . . . . . . . . . . . . . . . . . . 459
Isaac Namioka and Robert Ralph Phelps, Tensor products of compact convex

sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469
James L. Rovnyak, On the theory of unbounded Toeplitz operators . . . . . . . . . . . 481
Benjamin L. Schwartz, Infinite self-interchange graphs . . . . . . . . . . . . . . . . . . . . . . 497
George Szeto, On the Brauer splitting theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 505
Takayuki Tamura, Semigroups satisfying identity xy = f (x, y) . . . . . . . . . . . . . . 513
Kenneth Tolo, Factorizable semigroups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 523
Mineko Watanabe, On a boundary property of principal functions . . . . . . . . . . . . 537
James Juei-Chin Yeh, Singularity of Gaussian measures in function spaces with

factorable covariance functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

Pacific
JournalofM

athem
atics

1969
Vol.31,N

o.2

http://dx.doi.org/10.2140/pjm.1969.31.277
http://dx.doi.org/10.2140/pjm.1969.31.277
http://dx.doi.org/10.2140/pjm.1969.31.281
http://dx.doi.org/10.2140/pjm.1969.31.289
http://dx.doi.org/10.2140/pjm.1969.31.289
http://dx.doi.org/10.2140/pjm.1969.31.293
http://dx.doi.org/10.2140/pjm.1969.31.293
http://dx.doi.org/10.2140/pjm.1969.31.303
http://dx.doi.org/10.2140/pjm.1969.31.313
http://dx.doi.org/10.2140/pjm.1969.31.313
http://dx.doi.org/10.2140/pjm.1969.31.321
http://dx.doi.org/10.2140/pjm.1969.31.321
http://dx.doi.org/10.2140/pjm.1969.31.325
http://dx.doi.org/10.2140/pjm.1969.31.325
http://dx.doi.org/10.2140/pjm.1969.31.337
http://dx.doi.org/10.2140/pjm.1969.31.347
http://dx.doi.org/10.2140/pjm.1969.31.359
http://dx.doi.org/10.2140/pjm.1969.31.359
http://dx.doi.org/10.2140/pjm.1969.31.367
http://dx.doi.org/10.2140/pjm.1969.31.367
http://dx.doi.org/10.2140/pjm.1969.31.373
http://dx.doi.org/10.2140/pjm.1969.31.373
http://dx.doi.org/10.2140/pjm.1969.31.383
http://dx.doi.org/10.2140/pjm.1969.31.383
http://dx.doi.org/10.2140/pjm.1969.31.395
http://dx.doi.org/10.2140/pjm.1969.31.403
http://dx.doi.org/10.2140/pjm.1969.31.403
http://dx.doi.org/10.2140/pjm.1969.31.417
http://dx.doi.org/10.2140/pjm.1969.31.433
http://dx.doi.org/10.2140/pjm.1969.31.433
http://dx.doi.org/10.2140/pjm.1969.31.451
http://dx.doi.org/10.2140/pjm.1969.31.459
http://dx.doi.org/10.2140/pjm.1969.31.469
http://dx.doi.org/10.2140/pjm.1969.31.469
http://dx.doi.org/10.2140/pjm.1969.31.481
http://dx.doi.org/10.2140/pjm.1969.31.497
http://dx.doi.org/10.2140/pjm.1969.31.513
http://dx.doi.org/10.2140/pjm.1969.31.523
http://dx.doi.org/10.2140/pjm.1969.31.537
http://dx.doi.org/10.2140/pjm.1969.31.547
http://dx.doi.org/10.2140/pjm.1969.31.547

	
	
	

