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The main object in this paper is to show that many parti-
tion theorems which have been deduced from identities in basic
hypergeometric series and infinite products may in fact be
given purely combinatorial proofs. We show that the manipula-
tions performed on the generating functions have combinatorial
interpretations, and thus we obtain a "calculus of partition
functions" which translates a sizable portion of the techniques
of the elementary theory of basic hypergeometric series into
arithmetic terms.

In [13], Vahlen derived a large number of partition theorems
combinatorially. Some of his initial results are actually arithmetic
proofs of simple infinite product identities. For example, his deri-
vation of equation (10) [13; p. 4] is an arithmetic proof of

Π (1 - ?')

Π (1 - Qh)

In §2, we shall extend the results of Vahlen (Lemmas 3, 4, and 5)
and derive some further arithmetic proofs of well-known identities.
These results will form the basis of our calculus. In §3, we illustrate
the use of our calculus by giving new combinatorial proofs of Euler's
theorem [9; p. 277, Th. 344] and Jacobi's identity [9; p. 282].

It should be stressed that the interest of these results lies not
so much in their contribution to the search for new partition theorems
as in their clarification of the relationship between combinatorial
partition theory and what was previously the purely analytic aspect
of partition theory. Thus we include in §3 only two results of a
rather simple character; even these are relatively complicated to prove
by our calculus. However, the method of proof is equally applicable
to all the analytic results in [2], [3], [4], [5]; in such results Lemma 2
is crucial. And indeed the result on the order of a partition in [8]
indicates that one of Rogers's proofs of the Rogers-Ramanujan identi-
ties may now be translated into a combinatorial proof.

2* Fundamental lemmas* We let Σ denote the set of all
doubly infinite sequences of nonnegative integers {/w}~=_oo = {/«} for
which fn = 0 for all but finitely many n. We define a partition con-
dition R to be a subset of Σ We say that a partition n of the
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form n = b1 + b2 + = ΣΠ=-oo/ i (where /< is the number of times
i appears as a summand) satisfies the condition R if {/<} e iZ. Thus
if 22 = [{/<} | / 2 i = 0 for all j , and /< = 0 for i ^ 0}, then R is just
the condition that the partition have only odd parts (>0). The
symbol π will denote a finite set of integers (also π may denote the
sum of this set; no confusion should arise however), and the notation
πeR means that if we write π = ΣΠ=-«./W then {/JeiZ. If π =
Σfi i> then #ττ = Σ/»» and #'ττ denotes the number of i for which
fi Φ 0. Next if R is a partition condition then Rd is the subset of
R defined by Rd = {{/J | {/J e 22, /< ^ 1}. We also introduce a symbol
which is essentially used by Vahlen [13; p. 2] for his treatment of
partition functions; namely, N(s = π, π G iϋ) denotes the number of
partitions of s which satisfy the condition R. Sometimes we may
count partitions of s utilizing a weighting factor ωπ (e.g., ωπ might
be ( — l)*π or ( —l)*/ff); we denote this count by N(s = π, π e R; ωπ).
We may also wish to count partitions with compound partition con-
ditions; for example N(s — π + 7Γ*, πeRιy π* eR2) denotes the num-
ber of partitions of s of the form s =ΣΓ=-oo/< i + Σj=-~f'j J, where
{/<} e Λx, {/;•} G Λa. Further we let ^ . ( α , , , aΛ k) = [{/,} | fζ = 0 for
i ^ r — 1, and ft = 0 unless ΐ = ar̂  α2, , ^(mod &)]; for simplicity
;Tr - ^ . ( 1 ; 1), ^ r - ^ . ( 1 ; 2), ^ r = <STr(2; 2). Finally ί(π ) denotes the
largest part appearing in π.

Our first lemma is the arithmetic equivalent of multiplication of
generating functions.

LEMMA 1. Suppose for all s,

N(s = π, π G R,; ωπ) = N(s = π, π e R2, ώπ)

N(s = 7r', 7r' G R[; σπ) = N(s = π\ πf e R'2; σπ) .

Then for all s,

Proof.

N(s = π + π', π e Rλ1 πf e R[; ωπσπ,)

= N(s = π + 7r', 7Γ G J?2, π ' e iZJ;

N(s = π + 7r', π e Rλ1 π' G R[; ωπσπ,)

R πeuι

Σ

Σ ®, ΣΣ
Λ > 1 π' e R'9
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= Σ <»Λ = Σ σπ, Σ
πeR1 π, e R ' πeRt

π'eR'2 s~π' =

= Σ °« Σ
π'eR'2

 π e R 2
π' e K2

Our next result is the arithmetic equivalent of [10; p. 92, e.q.,
(3. 2. 2. 12)]

(2.1) A [ α ; *; ίJ - 1 + Σ ( 1 " θ ) \ " ( 1 " ^ ^ = Π ( - ^ r ^
»=i (1 - g) . . . (1 - qn) i=o (1 - z<f)

An arithmetic proof of (2.1) previously appeared in [6; §2]; however
the proof here is more natural in that it involves only ordinary
partitions and the one-to-one correspondence established is between
partitions not sets of partitions of equal cardinality. The technique
of Lemma 2 is used to prove a different partition theorem in [7].

L E M M A 2. Let m ^ 0 , n ^ 0 , l ^ a < β be fixed integers. Then

N(s = π + 7Γ', π e ^a+1(a; β)d, πf e ^ ( / 9 ; /3), #ττ + #ττ' = n, %π = m)

= N(s = π + TΓ', π e ̂ (a; β)\ π' e ̂ (β; β), l(π') = βn, %π = m) .

Proof. We establish a one-to-one correspondence between the
sets of partitions described above. Let π + π' be any partition of
the type enumerated by the right-hand side of the above equation.
We write π graph-theoretically as follows. Each part of the form βv
contributes β rows of v dots, and each part of the form βv + a con-
tributes a rows of (v + 1) dots and (β — a) rows of v dots. Now
consider the partition obtained from the columns of the above-men-
tioned representation of the partition. It is clear that all parts
are = 0, a (mod β) and there are again m parts of the form βv + a
although now a cannot appear as a summand; also now there are
exactly n parts appearing. Thus we have a partition of the type
enumerated by the left-hand side of the above equation. The above
procedure is reversible and thus establishes a one-to-one correspondence
between the two sets of partitions enumerated by the given partition
functions. This establishes Lemma 2.

We now prove three lemmas which are generalizations of results
due to Vahlen. The proofs are all similar so we give the details only
for Lemma 3 (c.f. [13; p. 5, eq., (14)]). The proof of Lemma 4 is similar
and may easily be obtained by proper extension of Vahlen's proof of
his equation (13) [13; p. 5]. Lemma 5 is in the same vein.
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LEMMA 3. Let η be any set of integers bounded below. Let
n = 2m,me η}, and let R{η) = {{/,} | f = 0 if i £ η). Then

N(s = π + TΓ', π & πr e R(η)d; %π + %π' = t; (-1)*)

_ j(-l) ί / 2iV(s = 7Γ, π e R(2τ])d, %π = t/2)t even

~ (0

REMARK. Since η is bounded below both sides of the above
equation are finite.

Proof. Let π + π' be a partition of the type enumerated by the
lefthand side of the above equation. Suppose there are exactly v(>0)
numbers which are summands of either π or π' but not both. The
remaining summands appear once in π and once in πr.

Thus given the totality of summands of π + πf we see that many
different partitions of the type enumerated by the left-hand side of the
above equation may be formed; indeed pick any subset of the v distinct
parts to form a portion of π, put the remainder of the v parts in
π' and split the repeated parts between π and π'. Thus there are

y \ ί V \ ( V \

0/ \ 2 / ' \4 /

partitions formed with #7Γ — —(t — v) even, and
Li

partitions formed with %π — —(t — v), odd. Thus counting with weight
Δ

(— 1)*" we see that as long as v > 0 we have zero total contribution to
our count. Thus

N(s = π + 7Γ', π e R(y)d, #ττ + #τr' = t; (-1)*)

_\N(s = π + π,πe R(η)d, #τr = t/2; (-I f") , t even

~ (0, ίodd.

_ j(-l) ί / 2iV(s = π, π G #(2)7)*, #ττ = ί/2), ί even

~ (0, todd.

This concludes the proof of Lemma 3.

Our next lemma treats

(2.2) Π (1 - aq')-1 = Π (1 - aqk)l Π (1 - aqh) ,

where ^ and j ^ ~ denote any two sets of integers (^M) such that
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L E M M A 4.

N(s = 7Γ, πeR(£f), %π = m)

- JVΓ(s = 7r + 7Γ', 7Γ G Λ ( ^ " - S^y, πf e

Proof. The proof is very similar to that of Lemma 3 and is
given in detail by Vahlen when S? is empty, m is arbitrary, and ^
is" the set of positive integers.

Our final lemma arithmetizes the reciprocal identity of (2.2).

LEMMA 5. Let .ζf g ^~ denote any two sets of integers (2^M).
Then

N{s = 7Γ, π e R{.9*)\ #π - m) - iV(s = π + π', π e R(^)d,

π' e R(JΓ - .9>\ $π + %π> - m; (-1)^') .

3* Partition function identities* The technique here is con-
ceptually very simple. We take a result from the elementary theory
of basic hypergeometric series and infinite products and then translate
the steps of the proof into arithmetic terms utilizing Lemmas 1-5.

We start with a well-known theorem of Euler.

THEOREM 1. Let όύ{n) denote the number of partitions of n into
odd parts. Let &(n) denote the number of partitions of n into
distinct parts. Then 6?{n) — &

REMARK. Arithmetic proofs of this theorem already exist [12; p.
45]. Indeed Vahlen gives an arithmetic proof [13; p. 3] which is al-
together different from the following.

Proof. We shall arithmetize the following identities

Π (1 + Qj) = Π (1 - <fθ/(l - Qj) = Π (1 - ί 2 ^ 1 )" 1 -
j -I- 3 I- 3=0

First ό'{ri) = N (s = π,π e ^ \ ) , and &(n) = N(s = π, π e fZ"[). Now

N(s - π, π e ..ZΪ)

= N(s = π + π' + π", π and πf e %r*, π" e ;rr, (-1)*"')

(by Lemmas 1 and 4)

= N(s = π + TΓ", π e Z? ί, π" e ;f\; (-1)*") (by Lemmas 1 and 3)

= N(s = π, π e ^ L ) (by Lemma 4).



560 GEORGE E. ANDREWS

The above is shorthand for the following combinatorial processes.
We write

Let us consider the partitions of 3 into distinct parts namely 3 and
2 + 1; thus ^(3) = 2. The second expression in the above proof counts
the excess of the 9 partitions 3/_/_, _/_/3, 2 + 1/./., _/2 + 1/., _/_/2 + 1,
2/./1, l/_/2,1/./2, 1/./1 + 1, _/_/l + 1 + 1 over the 7 partitions _/3/_,
2/l/_, 1/2/., ./2/1, ./1/2, 1/1/1, ./l/l + 1. The pairing described in Lem-
ma 4 to insure this excess is still 2 is as follows.

2 + 1/-/-
-l-β
-β + 1/-)
_/_/2 + 1J

2/-/1 ~
1/-/2 -
1/-/1 + 1 ~

Ml+1+1 ~

-βl-
'-/2/1

1-/1/2

2/1/-

1/2/-
1/1/1

-/l/l + 1

The third expression counts the excess of the 3 partitions _/3y

_/2 + 1, _/l + 1 + 1, over the single partition 2/1. The previous sets
of partitions are now paired in a new manner as described in Lemma
3 to accomplish this, namely

3/-/-
2 + l/_

_/2 + l

2/-/1

1/-/2

1/-/1 +
-/-/3
-l-β +

/-/I + 1 +

1

1

1

«— _ / 3 /

J2/1/

" (1/2/

— _/2/l

- -/1/2

— _/l/l

1/1/1 .

The first two partitions of the unpaired partitions above are added
to yield _/3, __/2 + 1, and _/l + 1 + 1 in the left column and 2/1 in the
right column.

Finally these partitions are paired according to Lemma 4. Namely,



ON A CALCULUS OF PARTITION FUNCTIONS 561

-/3

-/I + 1 + 1

_/2 + 1 «-* 2/1 .

This leaves the two partitions of 3 into odd parts, viz. 3, 1 + 1 + 1.
Next we give a proof of Jacobi's triple product identity [9; p.

282]. Previous arithmetic proofs have been given by Sylvester [12;
p. 34-36], Vahlen [13; p. 10-12], Wright [14], and Sudler [11]. This
proof is the arithmetization of the proof appearing in [1].

Our result will prove Jacobi's identity in the form

Π (1 - q^)(l + ztft-i) = Σ (TV- Π (1 + s-V''-1)-1 .
3=1 - o o j = l

THEOREM 2.

N(s = π + TΓ'; TΓ G gf ?, π' G ^f, #τr' = m; (-1)#7Γ)

= JV(s = w2 + 7Γ, 7Γ G ̂ l f n — %π = m

(n an arbitrary integer); ( — 1)*") .

Proof. Let m and s be fixed integers s ^ 0. First if m ^ 0

JV(s - π + τr'; 7Γ G Sf ?, 7Γ' € ^f, #ττ' - m; ( - l f τ )

= iSΓ(s = π + m2 + TΓ"; TΓ G gf f, π " e &\, l(π") ^ 2m; (-l) t r :)

(here we have merely removed 1, 3, 5, etc. from the

smallest, next smallest, etc. parts of TΓ'; also we use

the fact that partitions into ^ m even parts are equi-

numerous with partitions into even parts each ^2m)

= N(s = π + 7Γ* + m2 + TΓ"; π e gf ?, π* G ̂ fw+2, π " G ^ ,

Z(π") g 2m, l(π) ^ 2m; ( - l)*ff+*ff*) (by Lemmas 1 and 4)

= N(s = 7Γ* + m2; Γ* G g^2

d

m+2; (-l)#7r*) (by Lemmas 1 and 4).

Now the assertion made by the extremes of the above string of
equations is valid for m < 0 also since both sides are identically zero;
this is obvious for the left-hand side and follows for the right-hand
side by splitting the considered partitions into two equinumerous
classes: (1) those in which zero appears and (2) those in which zero
does not appear.

Hence if m and s are fixed integers with only s ^ 0 necessarily,
then

N{s - π + π' ; π e gf f, π' e ^ ? , #π' = m; (-1)**)

= N(8 = π* + m2; TΓ* G 2f 2

d

w+2; (-1)***)

= iV(e = τr§ + m2 + ^ 2 + 2mn + n;π% e &\, #τr§ <^ n, n ^ 0;

(-i) )
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(here we have subtracted 2m + 2, 2m + 4, etc. from

the smallest, next smallest etc. parts of TΓ*)

= N(s = πh + m2 + n2 + 2mn; πb e ^Λ, #πδ = n, n ^ 0; (-l)#7r")
(here we have added one to each part of π% and included
enough ones to get exactly n parts)

= N(s = πh + v2; πb e <%r19 v - §πh = m,v arb. integer; {-lfπh) .

Each stage of this proof is merely a combinatorial relationship
between various types of partitions; however, the actual illustration
of each step would be even more cumbersome than with Euler's theo-
rem.
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