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Let (X, ,00) be a metric space and, for each n — 0,1, 2, ,
let /»: X-> X be a function with fixed point an. Assume that
each function fn is contractive with respect to a (possibly)
different metric pn, where each pn is equivalent to p0. This
paper is concerned with the behavior of the sequence {an}™=1

when {fn\n=i converges pointwise to /<,.

In §1 an example of a compact space (X, 0̂) is given such that,
though {pn}7=ι converges pointwise to pQ, {αw}~=1 converges, and fn has
/0n-Lipschitz constant 1/2, {αΛ}~=i does not converge to α0. In §2 some
theorems are proved assuming uniform convergence of {pn}n=ί to ρQ.
The example in §1 shows that none of the results in §2 remains valid
if uniform convergence of the metrics is replaced by pointwise con-
vergence. In §3 a fixed point theorem for compact nonempty set-
valued contractive mappings is proved and it is shown that the
analogous statement for closed and bounded nonempty set-valued con-
tractive mappings is false. It is then indicated how the results of
§2 can be extended to compact nonempty set-valued contractive map-
pings.

Let (X, p) be a metric space. A function /: X—> X is said to be
a p-contraction if and only if there exists λ, 0 ^ λ < 1, such that
p(f(x), f{y)) ^ Xρ(x, y) for all x,y e X(X is called a p-Lipschitz constant

for / ) . A function f:X-+Xis said to be p-contr'active if and only
if p(f(x), f(y)) < ρ{x, y) for all x, y e X, x Φ y.

The following theorem was proved in [4].

THEOREM A. Let (X, p) be a locally compact metric space, let

fn: X—> X be a p-contraction with fixed point an for each n = 1,2, ,

and let fo:X—*X be a p-contraction with fixed point α0. If the

sequence {fn}Z=ι converges pointwise to fQ, then the sequence {αj~=i

converges to α0.

In [5] it was shown that closed and bounded nonempty set-
valued contraction mappings defined on a complete space have fixed
points. Theorem A and other results in [4] were generalized to com-
pact nonempty set-valued contractions.

Throughout this paper two metrics, dx and d2, for the same set
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X will be called equivalent if and only if the identity mapping from
(X, dλ) to (X, d2) is a homeomorphism,

1* T h e example. Let X = {(2-*, 2~j) \ i, j = 0, 1, 2, . . . , oo} with
the convention that 2~°° = 0. Let x, y e X and assume x = (2~k, 2~ι)
and y = (2~m, 2~p). For each integer n > 0 let

/|2~* - 2- m |

2 - 2~* + 2~p,

4,

| 2 - ι - 2 - > | ,

4

• 2-Λ „ 2 - m I + I 2-' - 2~p I

if i = p = w ,

if I = n, p Φ n
and m = 0,

if Z = n, p Φ n
and m Φ 0,

if I Φ n, p Φ n
and m = fc = 0,

if 2 ̂ = n, p Φ n,
m = 0 and kφ O,

if Z ̂  ^, p ^ w,
m ^ 0 and k φ O

and let

a?) = 2-jfc _ 2-» I + I 2~ι - 2~p

2~* - 2-*

if & = 0 and m Φ 0,

I, if & ̂  0 and m Φ 0,

, if k = 0 and m = 0 .

It is easy to verify that, for each integer n IΞ> 0, pn is a metric on X
which is equivalent to the metric on X inherited from the plane.
Furthermore, {ρn}Z=ι converges pointwise to p0.

For each integer n > 0 let fn: X—>X be given by

% 2-0 -
(2- ( ί + 1 ), 2-%), if i = n ,

(1, 2~%)

(1, 0)

, if j Φ n and i = 0 ,

, if j Φ n and i =£ 0 .

It is easy to proveDefine f0: X—+X by /0(x) = (1, 0) for all # e
that

( 1 ) for each n ^ 0, fn is a /^^-contraction mapping with pn-
Lipschitz constant equal to 1/2;

( 2 ) the sequence {/Λ}»=1 converges pointwise to /0;
( 3 ) the mapping fn has fixed point

(0, 2 - ) f

(1, 0),

w > 0 ,

n = 0

( 4 ) the sequence {αn}~=1 of fixed points converges to (0, 0) and
not to the fixed point (1, 0) of the limit function /0.



SEQUENCES OF CONTRACTIVE MAPS AND FIXED POINTS 661

2* T h e o r e m s for s ingle-valued mappings* The following
lemma will be useful.

LEMMA 1. Let (X, p0) be a metric space and K a compact sub-
set of X. Let {pn}n=ι be a sequence of metrics converging uniformly
to p0 such that each pn is equivalent to p0, and let {/»}J=1 be a se-
quence of ρn-contr active mappings converging pointwise on X to a
function f0. Then the sequence {/w}~=i converges (p0 — ) uniformly on
K to U

Proof. Let η > 0 and choose δ = ηβ. Let N be a natural num-
ber such that if n > N then | pn(x, y) — po(χ, y) | < δ for all x, y e X.
If n > N and x, y e X such that po(x, y) < δ, then

ft(/»(&), Uy)) < S + PΛM%), fM) < 8 + pn(χ, y)

< δ + δ + Po(x, y)< 3δ = Ύ] .

Hence if x,yeX and ρo(x, y) < δ, then ρo(fn(x), fn{y)) < V for all
n > N. Since f19 /2, , fN are each (pQ~) uniformly continuous on K,
the sequence {/n}"=i is (PQ — ) equicontinuous on K. Therefore, since K
is compact and {/»}?=1 converges pointwise to f0, it follows that {/«}?=1

converges (pQ — ) uniformly on K to /0. This completes the proof of the
lemma.

REMARK. Under the conditions of Lemma 1, without assuming
pn is equivalent to p0, it is not difficult to prove that f0 is ^-non-
expansive. Let x, y e X and let ε > 0. Choose N such that if n ^ N
then ρn is uniformly within e/4 of ρ0, po(fn(x), fQ(x)) < e/4, and ρo(fn(v),

< e/4. Then, if n ^ ΛΓ,

po(Uχ),Uv)) ^ po(Uχ),Mχ)) + Po(Mχ),

+ Po(fM,Uv)) < e/4 + ρn(fn(x),My)) + e/4 + e/4
< |O»(a?, 1/) + 3ε/4 < ^(a?, 2/) + e .

Since ε was arbitrary, /0 is |O0-nonexpansive.

The following theorem is a generalization of Theorem A, even in
the case when each pn = p0, because each fn for n = 0, 1, 2, is as-
sumed to be only contractive.

THEOREM 1. Let (X, p0) be a locally compact metric space and
assume {pΛ}"=1 and {fn}^o satisfy the hypotheses of Lemma 1. If f0

is Po-contractive and fn has fixed point an for each n = 0, 1, 2, -,
then the sequence [an}~=ι converges to α0.
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Proof. Let ε > 0 be chosen such that K(a0, ε) = {x e X \ ρo(ao, x) ^ ε}
is a compact subset of X. Since Lemma 1 applies, {/»}?=i converges
uniformly on K(a0, ε) to /0. Choose a natural number N such that if
n ^ N and x e K(ao,ε), then

Po(fn(x),/o(»)) < i" = s - sup{po(fo(z), aQ)\zeK(a0, ε)}

(clearly μ > 0 by the ^-contractiveness of f0 and the compactness of
K(a0, ε)). Then, iΐ n ^> N and a? e iΓ(α0, ε),

Oo) ^ Pθ(fn(%),fθ(%)) +

< j " + Po(fo(x), a0) ^ μ + (ε - μ) = ε .

Thus, for n^ N,fn maps UL(α0, ε) into itself. Letting flrΛ be the re-
striction of fn to iΓ(α0, ε) for each n^> N, we see that gn is a /0n-
contractive mapping of the (pn — ) compact metric space K(aQ, ε) into
itself. Therefore, gn has a fixed point in K(aQ, ε) for each n ^ N [1]
which must, from the definition of gn and the fact that fn has only
one fixed point, be an. Hence, an e K(a0, ε) for each n ^ N. It follows
that the sequence {α%}~=1 converges to α0.

THEOREM 2. Lei (X, |θ0) δe a metric space and assume {pn}Z=i
and {fn}n=o satisfy the hypotheses of Lemma 1. If fn has fixed
point an for each n ~ 1, 2, and some subsequence of {α%}~=1 con-
verges to a point xQ e X, then x0 is a fixed point of /0. In particular,
if /o is Po-contr'active with (unique) fixed point α0, then x0 = α0.

Proof. Let {α%.}Γ=i be a subsequence of {αw}J=1 such that {αWί}f=1

converges to a point #0 e X. Applying Lemma 1 to K = {x0, αΛl, αW2, •},
we see that {fn.}T=ί converges uniformly on K to /„. Hence, {fni(an.)}?=1

converges to fo(xo). But, since fn.(an.) = αΛi for each £ = 1, 2, and
since {α̂ }Γ=i converges to x0, this proves that fo(xo) = ^0

THEOREM 3. Lei (X, ^o) &β a metric space, let {pn}n=ι be a se-
quence of metrics converging uniformly to p0, and let {/n}~=i, each
fn having fixed point an, be a sequence of p^contractions converging
p0-poίntwise on X to a function f0 with fixed point α0. If there
exists β < 1 such that, for each n = 1, 2, , β is a pn-Lipschitz
constant for fn, then the sequence {an}ζ=ι converges to a0.

Proof. Let ε > 0. Choose a natural number N such that if
n ^ N, then

I p%(χ, y) - Po(χ, y) I < \ " f > ε

Δ + p



SEQUENCES OF CONTRACTIVE MAPS AND FIXED POINTS 663

for all x, y e X and

*ε
Δ -\- p

Then, for n^N,

Po(an, a0) g |θ 0 (Λ(αJ,/ % (α 0 )) + po(fn(<*>o), /0(α0)) < pn{fn{an), fn{aQ))

-\- p Δ -\- p

,«.) + a -

Hence, \ί n^> N, po{a>n, do) < e, proving- that the sequence {αΛ}~=i con-
verges to α0.

REMARK. Using the techniques in the remark following Lemma
1, it can be shown that the function f0 in Theorem 3 is a ^-con-
traction with ^o-Lipschitz constant β.

REMARK. In the proof of Theorem 1 we showed that all but
finitely many of the functions fn mapped the compact set K(a0, ε)
into itself. We could have concluded (without the assumption that
each fn had a fixed point) from Edelstein's Theorem 1 [l] that all the
functions fn mapping K(a0, e) into itself had fixed points. Furthermore,
this procedure would prove that these fixed points converge to α0.

3* Theorems for multi-valued mappings* Let (X, p) be a
metric space. By 2X[CB(X)] we mean the space of all compact [closed
and bounded] nonempty subsets of X metrized by H, the Hausdorff
metric induced by p[2, p. 131]. A function F: X-+CB(X) is said to
be a multi-valued p-contractίon [p-contractive] mapping if and only
if there exists λ < 1 such that H{F(x), F(y)) ^ \p(x, y) for all x,
y e X [ H ( F ( x ) , F ( y ) ) < ρ ( x , y ) f o r a l l x , y e X w i t h χ φ y \ . A p o i n t x e X

is said to be a fixed point for a function F:X-+CB{X) if and only
if xeF(x) (see [5] for further discussion).

Let F be a continuous function from X into 2X. If A is in 2A,
then u{F(a)\aeA} is also in 2Z[3, p. 168]. The function F:2X->2X

defined by F(A) = U {F(a) | a e A} for each A e 2X is called the function
induced by F. (A function similarly defined on CB(X) would not
necessarily have values in CB(X). Occasionally, when this more gener-
ally defined induced function has all its values in CB(X), we will
use it and denote it by F.) It is easy to see that the continuity of
F implies the continuity of F. If F is a multi-valued ^-contraction
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or ^-contractive mapping, then F is a ^-contraction [5] or (respec-
tively, on 2X) a /^-contractive mapping.

The next theorem is an extension of Theorem 1 in [1] and is
closely related to Theorem 5 in [5]. Since the existence of fixed
points is hypothesized in each of the theorems in §2, it is not necessary
to include the next theorem in order to generalize the results of §2
to set-valued mappings. However, it is included to show that re-
strictions similar to those imposed on single-valued contractive map-
pings guarantee that compact nonempty set-valued contractive map-
pings have fixed points.

THEOREM 4. Let (X, p) be a metric space and let F: X —• 2 x be
a multi-valued p-contractive mapping. If there exists Ae2x such
that some subsequence of the sequence {FΛ(A)}~=1 of iterates of F at
A converges to a member of 2Z, then F has a fixed point.

Proof. Let F:X-+2X be a multi-valued ^-contractive mapping
and let Ae2x such that a subsequence {Fn^A)}7=ι of {Fn(A)}~=1 con-
verges to a set Be2x. Now, since F is a ^-contractive mapping
(see comments above), we may apply Theorem 1 of [1] and obtain
that B is a fixed point of F, i.e., F(B) = B. Define a real-valued
continuous function g on B by g(x) = inf {p(x, y)\y e F(x)} for each
x G B. Since B is compact, g assumes its minimum r at some point
b e B. Suppose r > 0. Since F(b) is compact, there is a point z e F(b)
such that g(b) = pφ, z). Because g(b) = r > 0, b Φ z; also, since
z G Fφ), g(z) ^ H(Fφ), F(z)). It follows that

g(z) ^ H(Fφ), F(z)) < pφ, z) = gφ)9 i.e., g(z) < gφ).

However, since F{B) = B, zeB and this contradicts the minimality
of g at 6. Hence, r = 0. It now follows that b e Fφ), which proves
the theorem.

REMARK. Let F and A satisfy the hypotheses of Theorem 4 and
let {Fni(A)}T=ι be a convergent subsequence of {F*(A)}n=1 such that
lim Fni(A) = B e 2X . Then
i—>oo

(1) {Fn(A)}^ι converges to B and
(2) there exists a point pe X such that {Fn({p})"=1 converges

to B.

The proof of (1) is the same as the argument in Remark 3.2 of
[1]. To prove (2), choose peB. Then, since 2B is compact and
Fn({p}) e 2B for each n = 1,2, , the sequence {Fn({p})}~=ι has a con-
vergent subsequence which must, since it converges to the unique
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fixed point of F[l], converge to B. By (1), with {p} playing the
role of A, it now follows that {F*({p})}n=ι converges to B.

REMARK. Let F and B be as in the proof of Theorem 4, i.e.,
F(B) = B. We proved that there is a fixed point of F in B. Later
we shall use the fact that every fixed point of F is in B and we
now verify this. Let x0 be a fixed point of F and suppose x0 ί B.
Then inf {p(x0, y) | y e B) = η > 0 and, since B is compact, there is
yoeB such that p(xQ, y0) = η. Since H(F(xQ), F(y0)) < ρ(x0, y0) =j] and
x0 e F(x0), there is z0 e F(y0) such that p(xQ, zQ) < η. But, since F(B) =
B and #0 e B, F(y0) c I? which implies that zQ e B. This contradicts the
definition of rj.

Since a multi-valued contradiction mapping on a complete space
into CB(X) has a fixed point [5], one might conjecture that Theorem
4 could be extended to multi-valued contractive mappings into CB(X)
(assuming F maps into CB(X)). This is not possible in general, as is
seen in the following

EXAMPLE. Let X = {xn \ n = 0, ± 1 , ±2, •} u {y} be a countable
set of distinct points and define a metric p for X by the conditions

(1) p(xn, xn) = p(y, y) = 0 for all n = 0, ± 1 , ±2, . . •;
(2) p(xn, y) = >̂(2/, α?J - 10 for all w = 0, ± 1 , ±2, . . .

and (3) p(xn, xm) = 7n + Ύm for xn, xmeX with xn Φ xm, where

7, = — + — if k> 0 and 7& = 2 + — - — if k ^ 0 .
4 2* fc - 1

It is easy to verify that p is a metric. Define F:X—>CB(X) by
letting F(y) = X — {y} and FOEJ = xn+1 for each x% e X. It is easy
to see that F is a multi-valued ^-contractive mapping and that F
maps CB(X) into CB(X). Since Fn({y}) = X - {y} for each n =
1, 2, , it is obvious that the sequence {Fn({y})}n=ί converges (to
X — {y}). However, F has no fixed point. It is interesting to note
that, though F maps CB(X) into CB(X), F is not a contractive mapping.
Also note that (X, p) is complete.

We now present the types of modifications necessary to obtain
generalizations of the results in §2 to multi-valued mappings. For
the remainder of this section Hn will denote the Hausdorff metric for
2X induced by pn for n — 0,1, 2,

It is well-known that equivalent metrics for X may not induce
equivalent Hausdorff metrics for CB(X) [2, p. 131]. However, equiva-
lent metrics for X do induce equivalent metrics for 2Y. We need the
following lemma.
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LEMMA 2. // ρ1 and p2 are equivalent metrics for X, then
and H2 are equivalent metrics for 2X.

Proof. Let {A^i be a sequence in 2X such that {AJΓ=i converges,
with respect to Hlf to a set A e 2X. It follows that B = (UΓ=i At) U A
is a compact subset of X[3, p. 168]. Hence, p^ \ B is uniformly equiva-
lent to p21B. Therefore, since Hn \ 2B is the Hausdorff metric induced
by pn\ B for each n = 1 or 2, it now follows that f̂  12# is equivalent
to H212β. Thus, the sequence {AJΠ=i converges to A with respect to
H2. By symmetry we obtain the desired result (cf. 4).

Now we show how to generalize Theorem 1 of §2.

Let (X, po) be a locally compact metric space and let {pn}n=1 be a
sequence of metrics for X converging uniformly on X to pQ such that
each pn is equivalent to p0. For each n = 0,1, 2, , let Fn: X—*2X

be a multi-valued ^-contractive mapping with the property that there
is a set An e 2X such that some subsequence of {Ft(An)}"=1 converges
to a member of 2X or, equivalently, that Fn has a fixed point Bn e 2X

(that such an hypothesis is necessary is discussed in the remark be-
low). Let an be a fixed point of Fn for each n = 1, 2, (actually,
an exists for each n by Theorem 4 above).

Suppose the sequence {Fn}"=1 converges pointwise on X to Fo.
By Lemma 2, Hn is equivalent to lf0 for each n = 1, 2, . Routine
computations show that the sequence {Jϊw}%=i converges uniformly on
2A to iϊo A slight modification of the proof of Lemma 1 shows that
{Fn}Z=ι converges (Ho — ) uniformly on compact subsets of X to Fo. This
implies that {F%}"=1 converges pointwise on 2X to Fo. Since (2X, Ho)
is locally compact, we can now apply Theorem 1 to the sequence
{Bn}n=ι and conclude that {SjΓ^i converges to Bo. Since an e i?% for
each w = 1, 2, (see the 2nd remark following Theorem 4), {αj"=1

is a sequence of points in the compact set U {Bn \n = 0, 1, 2, •}.
Hence, {αw}£=1 has a convergent subsequence which, by an easy modifi-
cation of Lemma 3 of [5], must converge to a fixed point of jF0(note
that not every point in Bo is necessarily a fixed point of Fo).

REMARK. The restriction above that Fn have a fixed point in 2X

was necessary (even in the case where X is complete; compare with
Theorem 9 [5]). To see this let

X = \x. I jx. = i + 1 + — 1 — for each i = 0, 1, 2, Λ
I i + 1 J

with absolute value distance. Define F:X~+2X by

F(Xi) = {a?0, »i, , ̂  + 1} for each i = 0,1, 2,
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It is easy to verify that F is a multi-valued contractive mapping and
that F: 2X —> 2X has no fixed point. Each point of X is a fixed point
of F. If we let

Fn = F and an = n + n

n + 1

for each w = 0, 1, 2, •• , then we see that {Fn}n=i converges to Fo

but {an}ζ=1 has no convergent subsequence.

The modifications of other theorems in §2 are carried out in an
analogous fashion.

4* Added in proof. This result is contained in [3] as Theorem 3.3.
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