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We prove a necessary condition for a (compact, Hausdorff)
space to be dyadic (= image of product of 2-point spaces):

TueoreM. Let Y be a dyadic space of weight m, and let
r be a cardinal number less than m. Then X has a dyadic
subspace of weight .

It may be observed (with the aid of Corollary 2, below)
that this theorem is a stronger and more general version of

a result published in a previous paper by the author [this
Journal, 28 (1969), 173-182; Lemma III.6,]

A dyadic space is a Hausdorff space which is a continuous image
of {0, 1} (with the product topology) for some set I. Sanin has shown
(see [2], Th. 1) that, if X is an infinite dyadic space, then the smallest
possible cardinality for the exponent I is the weight of X, i.e., the
least cardinality for a basis for the topology of X, hereinafter denoted
by w(X). Other observations concerning the significance of w(X)
for an infinite dyadic space include the following: Esenin-Volpin
showed (see [3], Th. 4) that w(X) is the least upper bound of the
characters of the points of X; in [6] (Th. III.3) it is shown that a
dyadic space having a dense subset of cardinality m must have weight
no greater than 2™. (The converse of this last statement follows from
the well-known theorem of Hewitt, et. al., in [4]).

In what follows we shall use, whenever necessary, the fact that,
if X and Y are compact Hausdorff spaces and X is a continuous image
of Y, then w(X) < w(Y). ([1], Appendix.) For a set S, | S| denotes
the cardinality of S.

2. Proof of the theorem. (1) Suppose X is a dyadic space
and f a continuous function from {0, 1} onto X. Define ¢cel to be
redundant if, whenever two points p and ¢ in {0, 1}’ differ only in
the ¢th coordinate, we have f(p) = f(¢). By induction, if p and ¢
differ only on a finite set of redundant coordinates, then f(p) = f(q).
Since f is continuous, we must have that f(p) = f(¢) whenever » and
g differ only on an arbitrary set of redundant coordinates. Thus we
may assume that all the indices in I are nonredundant.

(2) Given ¢, there must exist two points p = p* and ¢ = ¢
such that p, = ¢, for all p ¢ p, =0 for all but finitely many g,
and f(p) = f(q); this follows from the continuity of f and the as-
sumption that ¢ is nonredundant.

(3) Now let » < w(X); if # is finite the conclusion is obvious.
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Assuming 7 is infinite, choose a subset R, of I such that |R,| = .
For each ¢e R, choose p* and ¢* as in (2). Let

E ={peR:p,=11U{}, and R=U{E:ccR}.

Let X, = f(Pg), where P, = {0, 1}* x {0} = {p€{0,1}':p,. =0 for p ¢ R}.
It is clear that {p:¢ce R} U {q':ce R} C Pg, and that |R| = r, so that
w(Xz) = r. We wish to show that w(X;) = »; suppose w(X,) < 7,
and let B be a basis for the topology of X, with | B| = w(X,). For
each ¢ € R, there exist U and V, members of B with disjoint closures,
such that f(p)eU and f(¢g)e V. Since r = |R,| > | B X B], there
must exist U and V such that R, = {¢: f(p*) e U, f(¢*) € V} has cardi-
nality > w(X;). The choice function ¢— (p*, ¢*) is one-to-one, thus
{(p, ¢"): ¢ R} has cardinality > w(X,), and we may as well assume
that {p‘:¢e R,} is infinite. Since P, is compact, there is an infinite
net {p‘} which converges to some point »°, and since each p* differs
from the corresponding ¢* only in a single coordinate, we must have
that {q'} converges to p° also. But then f(p°)ecl(U) N ecl(V), which
we have assumed to be impossible. Thus w(X,;) = r. [Note: by a
slight modification of the argument in this paragraph, we could take
R = I (containing only nonredundant indices) and get |I| = w(X), as
in Sanin’s theorem.] ‘

COROLLARY 1. Ewery infinite dyadic space contains an infinite
compact metric space.

COROLLARY 2. FEwvery nonmetrizable dyadic space has a dyadic
subspace of weight ..

COROLLARY 3. Let X be a dyadic space, w(X) = m. Then X
contains a chain {X,:n < m} of dyadic subspaces with w(X,) =n
for each n < m.

Proof. It is easy to see, in part (3) of the proof of the theorem,
that if w(X;) =r <mn, we can choose R’ DR so that w(X,) = n.
Clearly X, o X, if R DR.

3. Acknowledgment. The author wishes to express his appreci-
ation to the referee for his helpful comments and, in particular, for
suggesting a considerable simplification of the author’s proof of the
theorem.
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