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Let & denote a fixed positive integer, We define an
arithmetical function p,., the Mobius function of order %, as
follows:

m(l)=1,

te(n) = 0 if p*+'|n for some prime p ,

mm)=(=1r if n=pf---pi o}, O0=a:i<k,
>7r

t(n) =1 otherwise ,

In other words, #.(n) vanishes if 7 is divisible by the (k¥ + 1)st
power of some prime; otherwise, #(n) is 1 unless the prime
factorization of n contains the kth powers of exactly r distinct
primes, in which case p.(n) = (—1)". When &k =1, #(n) is the
usual Mobius function, /1 (n) = p(n).

This paper discusses some of the relations that hold among
the functions g, for various values of k. We use these to
derive an asymptotic formula for the summatory function

Mk(x> - ZSJ /uk(’n)

for each k = 2. Unfortunately, the analysis sheds no light on
the behavior of the function M,(x) =3, _, ¢(n).

It is clear that |, | is the characteristic function of the set Q,-,
of (k + 1)-free integers (positive integers whose prime factors are all
of multiplicity less than & + 1). Further relations with @,,, are given
in §s4 and 5.

The asymptotic formula for M,(x) is given in the following theorem.

THEOREM 1. If k= 2 we have

(1) > t(n) = Ay + O@'* log @) ,
where
(2) A, = 1 i#(n)nl——p"

Lk) =0 b win 1 —p*

Note. In (2), {(k) is the Riemann zeta function. The formula
for A, can also be expressed in the form

_ 1 & pn)en)
(3) A= Z(k) 2, ndi(n)

3

21



22 TOM M. APOSTOL

where @(n) and J,(n) are the totient functions of Euler and Jordan,
given by

pm) =n ]I 1 —p™), Jun) = n* [T (1 — 7).

pin

We also have the Euler product representation

(4) Ak:1;1<1——§7+})%;).

2. Lemmas. The proof of Theorem 1 is based on a number of
lemmas.

LEMMA 1. If k=1 we have p,(n*) = pu(n).
LEMMA 2. FEach function p, is multiplicative. That is,
t(mn) = p(myp,(n) whenever (m,n) =1.

LeEMMA 3. Let f and g be multiplicative arithmetical functions
and let a and b be positive integers, with a = b. Then the function

h defined by the equation
n
Jo()

1s also multiplicative. (The sum is extended over those divisors d of
n for which d* divides #n.)

hw = 3, f(

de|n

n
da

The first two lemmas follow easily from the definition of the funec-
tion p,. The proof of Lemma 3 is a straightforward exercise.
The next lemma relates p, to p,_,.

LeMMA 4. If k = 2 we have

i = 3 () (3).

dkin dk

- Proof. By Lemmas 2 and 3, the sum on the right is a multipli-
cative function of n. To complete the proof we simply verify that
the sum agrees with f,(n) when » is a prime power.

LEMMA 5. If k=1 we have

)| = 5 ().
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Proof. Again we note that both members are multiplicative
functions of » which agree when % is a prime power.

LEmMMA 6. If k=2 and »r =1, let
F’r(x) - %ﬂkﬂ(n)ﬂk—l(')ﬂkHln) .

Then we have the asymptotic formula

f—1
Fl2) = 2 PO oging_m)
k) Ju(r)
where o,(r) is the sum of the ath powers of the divisors of r, and
s 18 any number satisfying 0 < s < 1/k. (The constant implied by
the O-symbol is independent of #.)

Proof. In the sum defining F,.(x) the factor g, _,(r*'n) =0 if »
and » have a prime factor in common. Therefore we need consider
only those n relatively prime to ». But if (r, n) = 1 the multiplicative
property of p,_, gives us

/"k—l(n)ﬂk—x(”'k—ln) = ﬂka(n)zﬂk—l(?"kﬁl) = l#k—l(n) | wr),

where in the last step we used Lemma 1. Therefore we have

F@) = pr) 3 ||

(n,;):l
Using Lemma 5 we rewrite this in the form

Fow) = pr) >, >, pd) = p(r) Z md) > 1

(nnhz dkin (d”.)zl (qqf:)/ii
= ) 3 w5 o] 5]

(d,r)=

= St B o L]
(d,r)=1

At this point we use the relation [#] =  + O(z*), valid for any fixed
s satisfying 0 < s < 1, to obtain

F@ = 0 B0 2 {2+ o))
—x#(T)Z”(t) p(d) +0< vl _1_).

tr dhze  dF tr £° azailk QF°
(7=t

If we choose s so that 0 < ks < 1 we have
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Leolf ) o,

d=zi/k dks tks

and the O-term in the last formula for F, () is O(x'*d_,(r)). To com-
plete the proof of Lemma 6 we use the relations

and

19 _ 5 24 1o 3 a)

dk<e d¥ d=1 d¥ d>allk
(d,r)=1 (d,r)=1
1 1
— 4 O(g—0E
T OO
1 Pk
= L _ 0@ .
Ck) Ju(r)

3. Proof of Theorem 1. In the sum defining M,(x) we use
Lemma 4 to write

M, (x) =é#k(n) =20 2 e 1< dr >”" ‘<Z>

n=a ghin

=> > #k~1<m)#k—1(dk—lm)

dksz m<z/dk

= 3, Fu@/d) = > F.(x/r).

dk=e r<zifk

Using Lemma 6 we obtain

L(r)p(r) 1k I(1r).
(5) M) = C(k)rg/k rJ (1) +O< Tg;/k r >

‘The sum in the first term is equal to

W’Hl‘f’"‘ AU, g p"l+o(zi)
/}"

raatlk F e 1 — =1 pir 1 — roailk r®
_~ F‘("")@(T) () /k
- 54020 . ot

The sum in the O-term in (5) is equal to

0-—3(7') — 2 -t Z d—° = Z 51 Z d—1—¢

r<xllk r r<zllk do=r ssallk dszllls

= 0( S, ) = Olog 2) -

szl
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Therefore (5) becomes

_ % 3 pme(r) 1k
Mk(x)—c(k)rzzl () + O(x''* log 2) ,

which completes the proof of Theorem 1.
To deduce (4) from (2) we note that (2) has the form
A =23 pm)
C(k) n=1
where f(n) is multiplicative and f(p®) = 0 for ¢ = 2. Hence we have
the Euler product decomposition: [see 3, Th. 286]

A=z 0+ F@) =TT -2 {1 - 2 1=
e R (U Ak

4. Relations to k-free integers. Let @, denote the set of k-
free integers (positive integers whose prime factors are all of multiplicity
less than k), and let ¢, denote the characteristic function of Q,:

1 if ne@,,
0 otherwise.

qi(n) = i
Gegenbauer [2, p. 47] has proved that the number of k-free integers < x
is given by

~ . X 1/k
(6) %qk(n)—erO(w’), (k= 2).

From the definition of p, it follows that ¢,.,(n) = | zi(n)|, so Gegen-
bauer’s theorem implies the asymptotic formula

_ X 1/(k+1)
(7) é|#k(n)!—m+o(x/ ) k=z1).

From our Theorem 1 we have
(8) S t(m) = Ax + O(xV* log @) k>1).

The two formulas (7) and (8) show that among the (k + 1)-free integers,
k > 1, those for which g,(n) = 1 occur asymptotically more frequently

than those for which g,(n) = —1;in particular, these two sets of
integers have, respectively, the densities
1 1 1 1
11 A) a L1 ___a,).
2<C(k+1) ) ey <C(k+1) y
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This is in contrast to the case &k = 1 for which it is known that

Z!#()Ih

Py 0@ but 3 pn) = o),
so the square-free integers with p(n) = 1 occur with the same asymptotic
frequency as those with p(n) = —1 [see 3, p. 270].

Our Theorem 1 can also be derived very simply from an asymptotic
formula of Cohen [1, Th. 4.2]. Following the notation of Cohen, let
Qi denote the set of positive integers n with the property that the
multiplicity of each prime divisor of # is not a multiple of k. Let
gi denote the characteristic function of ;. Then ¢3(1) = 1, and for
n > 1 we have

) 1 if n= ﬁ p%, with each a;, = 0 (mod k) ,
qi(n) = i
0 otherwise.

The functions ¢ and g, are related by the following identity:

(9) aim) = 3 m(-2).

dkin

This is easily verified by noting that both members are multiplicative
functions of » that agree when = is a prime power, or by equating
coefficients in the Dirichlet series identity (14) given below in §5.
Inversion of (9) gives us

10) pn) = 3 pdjai(-2)

ak in
Cohen’s asymptotic formula states that for &t = 2 we have
(11) g gi(n) = A, (k)x + O@') ,

where A, is the same constant that appears in our Theorem 1. To
deduce Theorem 1 from (11) we use (10) to obtain

S =3 3 p(d) gi(-%) = 3 ud) 3 gim)

n<w n=w glin mgx/dk

=5 u d){A,,c(fc)_ +o(% )}
= Al 3], ”Cgf) +0(s v S _1_)
= Al 3, EL%Z) n O<d>§m d+) + 0@ log )

= A2z + O@z'*log x) .
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Conversely, if we start with equation (9) and use Theorem 1 we
can deduce Cohen’s asymptotic formula (11) but with an error term
O(@x* log x) in place of O(x'*) .

5. Generating functions. The generating function for the #k-
free integers is known to be given by the Dirichlet series

12 = g _ L) 1

(12) ST - 6>

[see 3, Th. 303, p. 255]. It is not difficult to determine the generating
functions for the functions y, and ¢} as well. Straightforward calcu-
lations with Euler products show that we have

(13) S0 g - 2 )
=i N » D p

and

(14) i = L(ks) i #’;z(s%)

for s > 1. Equation (14) is also equivalent to equations (9) and (10).
From (12) and (14) we obtain the following identity relating ., g,
and qj:

(s) i //t,c(n) _ (Z,‘ %(n)><i gi(n > .

nw tn

This shows [see 3, §17.1] that the numerical integral of p, is the
Dirichlet convolution of ¢, and ¢}:

5 () = Sadai(2).
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