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COEFFICIENT MULTIPLIERS OF H* AND B* SPACES

P. L. DureN AND A. L. SHIELDS

This paper describes the coefficient multipliers of
Hr(0 < p<1) into s%(p<q =< o) and into HY(1 < g £ ),
These multipliers are found to coincide with those of the
larger space B into /%1 < ¢ < o) and into HY (1 = ¢ < ),
The multipliers of H? and B® into B{0<p<1,0<¢g<1)
are also characterized.

A function f analytic in the unit disk is said to be of class

H?(0 < p < o) if

1 2x 0 ifp

My, £) = { o=\ fere) 1 o)

21 Jo
remains bounded as »— 1. H= is the space of all bounded analytic
functions. It was recently found ([2],4]) that if p <1, various
properties of H? extend to the larger space B* consisting of all an-
alytic functions f such that

Sla — )t M, f)dr < oo

Hardy and Littlewood [8] showed that H® < B*.

A complex sequence {\,} is called a multiplier of a sequence
space A into a sequence space B if {\,a,} € B whenever {a,}c A. A
space of analytic functions can be regarded as a sequence space by
identifying each function with its sequence of Taylor coefficients. In
[4] we identified the multipliers of H? and B?(0 < p < 1) into . We
have also shown ([2], Th. 5) that the sequence {n'/*~*/?} multiplies B?
into B?. We now extend these results by describing the multipliers
of H?(0 < p < 1) into 7% (p £ ¢ < =), of B? into 7(1 < q < ), and
of both H” and B* into B0 < g < 1). We also extend a theorem of
Hardy and Littlewood (whose proof was never published) by character-
izing the multipliers of H” and B? into H{(0 < p<1Z£q < ). In
almost every case considered, the multipliers of B? into a given space
are the same as those of H”.

2. Maultdipliers into 2% We begin by describing the multipliers
of H® and B* into -, the space of bounded complex sequences.

THEOREM 1. For 0 < p <1, a sequence {\,} is a multiplier of
H? into 7= if and only if

69
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(1) A, = O(n=17)

For p < 1, the condition (1) also characterizes the multipliers of BP
wnto 7.

Proof. If f(z) = >, a,%" is in B?, then by Theorem 4 of [2],
(2) a, = o(n'?Y) .

If fe HY, then a, — 0 by the Riemann-Lebesgue lemma. This proves
the sufficiency of (1). Conversely, suppose {\,} is a multiplier of H?
into #=. Then the closed linear operator

A: f—_—) {A’nan}

maps H? into »=. Thus 4 is bounded, by the closed graph theorem
(which applies since H? is a complete metric space with translation
invariant metric; see [1], Chapter 2). In other words,

(3) sup | Mt | = |[ANI = K|S -
Now let '
g@) = (1 — 277" = 37 b,2",
where b ~ Bn'?; and choose f(z) = g(rz) for fixed » < 1. Then by (3)
N | nier < C(1 — 7).

The choice » = 1 — 1/n now gives (1). Note that {\,} multiplies H?
or B? into ~= if and only if it multiplies into ¢, (the sequences tend-
ing to zero).

As a corollary we may show that the estimate (2) is best possible
in a rather strong sense. For functions of class H?, this estimate is
due to Hardy and Littlewood [8]. Evgrafov [6] later showed that
if {6,} tends monotonically to zero, then there is an fe H? for which
a, # 00@,n'*). A simpler proof was given in [5]. The result may
be reformulated: if a, = O(d,) for all fe H?, then d,n""? cannot tend
monotonically to zero. We can now sharpen this statement as follows.

CorROLLARY. If {d,} is any sequence of positive numbers such
that a, = O(d,) for every function >, a,z" in H?, then there is an
€ > 0 such that

dnnlﬁllpge>01 %:1727"'

Proof. If a, = O(d,) for every fe H®, then {1/d,} multiplies H?
into #=. Thus 1/d, = O(n'~'/?), as claimed.
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We now turn to the multipliers of H? and B” into ~%(q < <o), the
space ‘of sequences {c,} with 3 |¢,|? < . The following theorem
generalizes a previously known result [4] for ~'.

THEOREM 2. Suppose 0 < p < 1.
(i) A complex sequence {\,} ts a multiplier of H? 1into
p £ q < c0) if and only if

(4) ﬁ nl7 [ h, |7 = O(N)

(ii) If 1 <q < oo, {N,} s a multiplier of B” into % 1f and
only 1if (4) holds.

(iiil) If g < p, the condition (4) does not imply that {\,} multi-
plies H® into <% nor does it imply that {\,} multiplies B® into °
if ¢ <L

Proof. (i) A summation by parts (see [4]) shows that (4) is
equivalent to the condition

(5) 3l = O =)

Assume without loss of generality that A, =0 and 37 A2 = 1. Let
s, = 0 and

S 1/8
Snzl_{ZN%} 9 %:2,3,"',
k=n

where 8 = g(1/p — 1). Note that s, increases to 1 as n— . By a
theorem of Hardy and Littlewood ([8], p. 412), fe H?(0 < » <1) implies

) @ = )= Mzt prar < o, p=q <o

Thus if f(z) = >\ a,z" is in H” and {\,} satisfies (4) with »p < q < o,
it follows that
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by the definition of s,. But by (5),

n

which shows, by the definition of s,, that
E)""zZ (L —-Cm) " ——e>0.

Since these factors (s,)* are eventually bounded away from zero, the
preceding estimates show that >)|a,|?A < o. In other words, {\,}
is a multiplier of H” into ~¢ if it satisfies the condition (4).

(ii) The above proof shows that {»,} multiplies B* into ~' under
the condition (4) with ¢ = 1. (This was also shown in [4].) The more
general statement (ii) now follows by showing that if {\,} satisfies (4),
then the sequence {z,} defined by

Yo = ])\m iq pie—1g—1

satisfies (4) with ¢ = 1. Hence {g¢,} is a multiplier of B? into !, and
in view of (2), {\,} is a multiplier of B? into »? Alternatively, it can
be observed that fe B® implies (6) for 1 < g < <, so that the forego-
ing proof applies directly. Indeed, if fe B®, then (as shown in [2],
proof of Theorem 3)

M(r, f) = O((L — 7)) 5
hence, if 1 < q < oo,
Sl(l — 7)™ M, fdr = C§1<1 = )M (r, fdr < oo
0 0

(iii) That (4) does not imply {»,} multiplies H? into ~%(g < p) or
B? into #%(q < 1), follows from the fact [4] that the series

Zl pea-tn-1 'an }q
=

may diverge if fe H? and ¢ < p, or if feB? and ¢ < 1.
To show the necessity of (4), we again appeal to the closed graph
theorem. If {\,} multiplies H? into /%0 < p < =, 0 < ¢ < =), then

A: f—— {N,a,}
is a bounded operator:
b /g oo
{7§)|Xnan|q} <CIlIfl, f(z):%anzner_

Choosing f(z) = g(rz) as in the proof of Theorem 1, we now find
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[Zn el = ca -0y

and (4) follows after terminating this series at » = N and setting
r =1 —1/N. Note that the argument shows (4) is necessary even if
p=1orq<p.

COROLLARY 1. If {n,} ts a lacunary sequence of positive integers
M/, = Q > 1), and tf f(2) = D a,2" is in H?(0 < p < 1), then

ST a, [t <o, p=g <o

k=1

COROLLARY 2. If f() =2 a.,z" is in H*(0 <p<l), then
2N a, [P < oo

The first corollary extends a theorem of Paley [13] that fe H®
implies {a,}ec~* The second is a theorem of Hardy and Littlewood
[7]. It is interesting to ask whether the converse to Corollary 1 (with
g = p) is valid. That is, if {¢,} is a given sequence for which

;’nfj—l]cklp < oo,
=1

then is there a function f(z) = >, a,2" in H? with a,, =¢,? We do
not know the answer.

Hardy and Littlewood [9] also proved that {\,} multiplies H* into
H* (alias ~*) if (and only if)

N

21 ] = OV .

From this it is easy to conclude that (4) characterizes the multipliers
of H' into % 2 < q < . Indeed, let {»,} satisfy (4) and let g, =
[N, 7. Then, by the Hardy-Littlewood theorem, {g,} multiplies H*
into ~* (see [3], p. 253). Hence {\,} multiplies H' into ~? (See also
Hedlund [12].)

On the other hand, the condition (4) is not sufficient if p = 1 and
g < 2. This may be seen by choosing a lacunary series

f@) = Seat,  mfnzQ>1,
with 3¢, P < o but 3,|¢,| = = for all ¢ < 2. The sequence {\,}
with A, =1 if » = n, and A, = 0 otherwise then satisfies (4) but does

not multiply H* into 2% q < 2.

3. Maultipliers into B’ The following theorem may be regarded
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as a generalization of our previous result ([2], Th. 5) that if fe B,
then its fractional integral of order (1/p — 1/q) is in B (A fractional
integral of negative order is understood to be a fractional derivative.)

THEOREM 3. Suppose 0 < p <1l and 0< q<1l. Let v be the
positive integer such that (v + 1)7' < p <v~'. Then {\,} is a multi-
plier of H? or B? into B if and only if g(z) = D,ooN.2" has the
property

(7) Ml(’l‘, g(u)) — O((l _ /',.)l[p—xlq__v) .

Proof. Let {\,} satisfy (7), let f(?) = 3, a,.2" be in B”, and let
h(z) = >\ n,a,2”. Then

h(0z) = —1~S2:f(pe”)g(ze‘”)dt , 0<p<l.
27 Jo

Differentiation with respect to z gives
(8) ph08) = =\ Floe g e et
T Jo

Hence

oMo, b)) = Mi(r, 9*)M(0, £)
< C(L — )= My(p, f) ,

where r = |z|. Taking r = o, we now see that fe B” implies 2’ € Be,
1/s = 1/qg + v. Thus he B? by Theorem 5 of [2].

Conversely, let {\,} multiply H? into B?. Then by the closed graph
theorem,

A: S a, gt —— S N,a,2"

is a bounded operator from H? to B. If (v + 1)7' < p < v, let

@) = vzl — 2" = 3 a2,

n=y

where a, = n!/(n — v)!, and observe that
(9) 2) = 3 M2t =29 () -

Let f.(2) = f(rz) and h,(z) = h(rz). Since 4 is bounded, there is a
constant C independent of » such that

R lloe = NASN < C L lww

In other words,
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1
S (A — O —M(tr, h)dt < CM,(r, )
0
— O((1 — P |

It follows that
M, (7%, h)Sl(l — t)H=2dE = O((1 — r)Hr—Y

or
M, (7, h) = O((1L — r)!e=tha=>) |
But in view of (9), this proves (7).

COROLLARY. The sequence {\,} multiplies B into B® 1if and only

if

(10) Mr, ') = 0( - 1 T) .

Proof. If p = gq, the condition (10) is equivalent to (7). (see [8],
p. 435.) This corollary is essentially the same as a result of Zygmund
([14], Th. 1), who found the multipliers of the Lipschitz space 4, or
A, into itself. Because of the duality between these spaces and B?
(see [2], §§3,4), the multipliers from 4, to 4, and from i, to X,
(0 < @ < 1) are the same as those from B” to B?. Similar remarks
apply to the spaces 4, and \,, also considered in [14].

4. Multipliers into H?. By combining Theorem 3 with the simple
fact that f/ e B'® implies fe H!, it is possible to obtain a sufficient
condition for {\,} to multiply H? into H, 0 <p<1<¢< . However,
this method leads to a sharp result only in the case ¢ = 1. The follow-
ing theorem provides the complete answer.

THEOREM 4. Suppose 0 <p <1l g=co,and let (v + 1) <p <y,
v=12 ---. Then {\,} ts a multiplier of H” or B® into H?* if and
only if 9(&) = Dro M2™ has the property

(11) M,(r, g*) = O((L — 7)!r=) .
Hardy and Littlewood ([9], [10]) stated in different terminology
that (11) implies {\,} is a multiplier of H? into H (0 < p < 1 £ q < o0),

but they never published the proof. Our proof will make use of the
following lemma.

LEMMA. Let f be analytic in the wnit disk, and suppose
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@ = e, frar < oo,
where « >0 and 1 < q < . Then

@ = e, prar < oo .

Proof of Lemma. Without loss of generality, assume f(0) =0,
so that

flre®) = S:f’(se“’)e“’ds .
The continuous form of Minkowski’s inequality now gives
(12) M, ) = | Mts, £)ds
Hence an interchange of the order of integration shows that
ﬁd—r%ﬂ%@Jﬂr§éﬁﬂ—@%ﬁafﬂ&
which proves the lemma.

Proof of Theorem 4. Suppose first that {1,} satisfies (11). Given
f(?) = > a,2" in B, we are to show that 4(z) = 3 \,a,2" belongs to H.
By (8), with v replaced by (v + 1), we have

o R (02)| = o= | 0o | 19 (me) | d
2w Jo

Since ¢ = 1, it follows from Jensen’s inequality ([11], §6.14) that

ot Mq("'py Rty < Ml([O’ FYM (7, g+l
= CQ — r)'" Mo, f) »

where » = |2| and (11) has been used. Now set » = p and use the
hypothesis e B® to conclude that

Yawmwmnwww¢<w.

0

But by successive applications of the lemma, this implies
1
Smmmw<m.
0

Thus, in view of the inequality (12), it follows that % ¢ H?, which was
to be shown.
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Conversely, suppose {\,} is a multiplier of H” into H? for arbitrary
q(0 < ¢ < ). Then by the closed graph theorem,

A: 3 az" —— S N,a,2"

is a bounded operator from H? to H? An argument similar to that
used in the proof of Theorem 3 now leads to the estimate (11).

COROLLARY. If0 < p<1<Zq< «and fe B?, then its fractional
wntegral f,€ H, where o = 1/p — 1/q. This is false if q < 1.

This corollary can also be proved directly. Indeed, since ([2], Th. 5)
the fractional integral of order (1/p» — 1/s) of a B? function is in B°
(0 < s<1), and since ([8], p. 415) the fractional integral of order
(1 — 1/q) of an H' function is in H%(1 < ¢ £ <o), it suffices to show
that f’ ¢ BY* implies fe H'. But this is easy; it follows from (12) with
q = 1. That the corollary is false for ¢ < 1 is a consequence of the
fact ([2], Th. 5) that the fractional derivative of order (1/p — 1/q)
of every B‘ function is in B®.

The converse is also false. That is, if fe H? its fractional
derivative of order (1/p — 1/¢) need not be in B?(0 < p <1 £ g £ o0).
As before, this reduces to showing that fe H' does not imply f’'e B2
To see this, let f(z) = 3 ¢,2"#, where {n,} is lacunary, {c.} e ~? and
{e.}¢ #'. Then fe H*c H', but f’¢ B, since it was shown in [4]
(Th. 3, Corollary 2) that

I;%};”p ]a”k] < o0

whenever 3 a,2" € B? and {n,} is a lacunary sequence.
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