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LOCAL ISOMETRIES OF FLAT TORI

H. G. HELFENSTEIN

Let T, and T: be two flat tori (i.e., provided with a com-
plete Riemannian metric of vanishing curvature). Since they
are locally Euclidean each pair of points P,, P,, P;c T, has
isometric neighborhoods. In general it is not possible, how-
ever, to join these separate isometries of neighborhoods to
preduce a single isometry 7 — T, or T:— T;; indeed there
may not even exist a locally isometric map (of the wheole sur-
faces). Necessary and sufficient conditions for the existence
of such maps are deduced, making use of a recent conformal
clagsification of maps between tori. As expected ‘“‘ample”
and nonample tori behave differently, and the determination
of all local isometries leads te number-theoretic problems.
Finally, for two given tori, the local isometries are compared
with respect to homotopy by analyzing their effect on the
fundamental groups,

Let R* denote the positive reals, H the upper z-half-plane, and
SL(2, Z) the group of all 2 x 2 unimodular matrices with integral
entries acting in the usual way as hyperbolic motions on H. The set
of isometry classes of complete flat tori is parametrized by the 3-
dimensional manifold R* x (H/SL(2, Z)). A point (v, 7) of this space
represents the isometry class of the torus E*/I", where [" is the group
of Euclidean motions generated by the translations

t(2) =24+ 7r and t() =z + rh,

with ke, (cf. [2]). Instead of “an isometry class of tori” we speak
simply of “a torus”. A torus T = (7%, 7) is called ample if there exists
h et such that both Rk and |[A[* are rational.

2. Riemannian covering maps. The following statements are
generalizations of results obtained in [1] which can be similarly proved.

(i) For two tori T, = (7}, 7;) there exist conformal covering maps
T,— T, if and only if two representatives h; € 7; are equivalent under
the action of the group GL*(2, @) = group of 2 x 2 matrices with
rational entries and positive determinant.

(ii) Lifting any conformal covering T,— T, to the universal
covering planes we obtain

(1) F(, C,D)y=Cz+ D,

with complex constants C = 0 and D.
(iii) For nonample T; only
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(2) Ck) = Lok, £=+1, +2, --.

1

are admissible values in (1).
(iv) For ample T; = (v, 7;) (2) is replaced by

(3) C(/fu ’Cz) = :2 (Icl + ’Czq”snkz) ’

1

where h, e 7,, h, = ah,, a an integer, (k,, £,) % (0, 0) is a pair of arbitrary
integers, and the integers g¢”,s” are determined via the following
relations,

oRh, =L, |np=1,
q s
P, g > 0,7 > 0,s > 0 integers,
g.cd. (p,q) =ged.(r,s) =1,
g =g.cd. (g, 9,9 =4q/g,s = s/g,
g’ = g.c.d. (ay q)’ a = a/g" q’ = Q/g’ )
gll — g.c.d. (aly s’)’ all — a’/gll’ SII — sl/gll .

The following materices are computable from these numbers.

~ a, 0 ~ a'ps”, —a”’q'r
O, 1 q"S", 0
Our main result is

THEOREM 1. For the existence of a local isometry f: T, — T, the
Sollowing conditions are mecessary and sufficient:

(1) 7, and 7, are equivalent under GL*(2, Q);

(2a) If T, is nonample, then r./r, must be an integer;

(2b) If T, is ample, then (r}/r))a must be an integer N, and N
must be representable by the quadratic form

(4) det (v, T, + £, T

with suitable integers k, and K,.

Proof. Since f is a conformal covering we have necessarily (1) by
(i). The following identity is readily verified:

L IClta = jdet (T for T, nonample
2

73 ¢= ldet (x, T, + «,T,) for T, ample .

(The right hand side gives the number N of sheets of the covering f).
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Together with the condition |C| = 1 for local isometry it leads to
(2a) and (2b). The sufficiency follows from (iii) and (iv).

In both cases we have the following consequences. A flat torus
can cover a countably infinite set of tori by local isometries. For T, =
T, a local isometry is a global isometry, since |C| = 1 entails N=1. In
general the existence of a local isometry T, — T, does not imply that
there is also a local isometry T, — T,; this occurs if and only if both », = »,
and condition (1) are satisfied. (Then the tori still need not be globally
isometric).

3. Homotopy classes. We show how the combination &, T, + «,T,
controls also the deformation properties of our maps. If the constant
D in (ii) is varied the map stays in the same homotopy class, but
maps corresponding to different parameter values k£ or (k,, k,) are not
analytically homotopic (i.e., with analytic intermediately stages during
the deformation), since the set of admissible values of C is discrete.
‘We show that they are not even homotopic in the ordinary sense.

Since the fundamental group 7, (7T) of a torus is Abelian the set
&7 of homotopy classes of continuous maps T, — T, is in one-to-one corre-
spondence with the set of all homomorphisms 7: 7,(T,) —,(T,). Denoting
by L; and L} (¢ = 1, 2) the path homotopy classes of two generating
loops of 7,(T;), each such 7 is characterized by the integral matrix

& &
- (Cu ‘;3)
- &~ ~

Sy S1

(L) = LiLi, (L) = LiLi ;

iy

given by

hence 277 is parametrized by Z‘. The subset {¢e Z*: deté& = 0} con-
tains those points of Z* representing monomorphisms, hence it corres-
ponds to the homotopy classes containing covering maps.

THEOREM 2. The subset of Z* corresponding to homotopy classes
which contain analytic maps consists of

@) 0 only if 7, and 7, are nonequivalent under GL*(2, Q);

(b) the 1-dimensional sublattice spanned by T, if v, and T, are
equivalent under GLY(2, Q) and both are monample;

(¢) the 2-dimensional sublattice spanned by T, and T, if t, and
7, are equivalent under GL*(2, Q) and both are ample.

Proof. We prove only (c); (a) and (b) can be handled similarly.
'The generators L,, L. of ©,(T;) are represented in E; by the segments
S;, S; joining the origin to 7, and r;h; respectively. The segments S,
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and S; are mapped by F'(z; C, 0) (cf. (ii)) into segments from the origin
of E, to the points

Ery + ’fzan”"'zhz
and
—k,ra’q'r, + (k.0 + £,8"pa’)rh, .

The former can be deformed into the two sides &,7, and k,s"'q"'r;h,
of a parallelogram parallel to S, and S,. The first side represents «,
circuits of L, the second «k,sq” contours of L;. Similarly for Si.
Hence the homomorphism

Fir (T — 7. (T))
induced by f is determined by

Full) = LgLi=v"
and

Fo(L) = Lysre s [jnoteas e
This is equivalent to & = £, T, + &,7T..
The determination of all local isometries for two given tori is easy

for the nonample case. In the ample case it involves the number of
ways in which N = (r/r})a can be represented by the quadratic form

(4). Since this form is positive definite we have, in conjunction with
Theorem 2:

THEOREM 3. The number of homotopy classes of local isometries
between two flat tort is finite.

We obtain an upper bound for this number as follows: From (3)
we find

RC = 2 (/:1 + £.8” p, > ,
7 2¢g

which shows that RC has the form (r,/7)(v/2¢’), with v an integer.
Substituting this in |RC| < [C]| = 1 leads to

(5) 17| < 29/ .

Ty

From (2C)* = |C|* — (RC)* we deduce
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2 2
(6) qunzsnz(zhz)z - Y
r g
and
7 K, = T g P
(7) 5y S5

Each of the 2[2¢'(r,/r,)] + 1 integers v compatible with (5) leads
to at most two pairs (£, ;) compatible with (6) and (7). Thus the
number of homotopically different local isometries does not exceed
4[2g'(r,[r)] + 2.
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