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THE ADJOINT GROUP OF LIE GROUPS

DONG HOON L E E

Let G be a Lie group and let Aut(G) denote the group
of automorphisms of G. If the subgroup ϊnt(G) of inner-
automorphisms of G is closed in Aut(G), then we call G a (CA)
group (after Van Est.). In this note, we investigate (CA)
property of certain classes of Lie groups. The main results
are as follows:

THEOREM A. Let G be an analytic group and suppose that
there is no compact semisimple normal subgroup of G. If G
contains a closed uniform (CA) subgroup H, then G is (CA).

THEOREM B. If G is an analytic group whose exponential
map is surjective, then G is (CA).

In [3], Garland and Goto proved that if an analytic group G con-
tains a lattice, then G is (CA). Since a lattice in a solvable group is
a uniform lattice, it is finitely generated and so the automorphism
group of this uniform lattice is discrete, and thus this lattice is
trivially a (CA) subgroup. Thus Theorem A generalizes the above
theorem of Garland and Goto for solvable groups. Theorem B is an
improvement of the well known theorem that every nilpotent analytic
group is (CA) (see [2]). In §1, we introduce some notation and
preliminary materials. §2 and §3 are devoted for the proofs of the
main theorems together with their immediate corollaries.

1* Preliminaries and notations* The group Aut(G) of auto-
morphisms of locally compact a topological group G may be regarded as
a topological group, the topology being the (generalized) compact open
topology defined as in [5]. Thus, if we denote by N(C, V) the set
of all θ e Aut(G) for which θ(x)x~ι e V and θ-ι(x)χ-χ e V whenever xeC,
then the sets N(C, V) form a fundamental system of neighborhoods
of the identity element of Aut(G) as C ranges over the compact sub-
sets of G and V over the set of neighborhoods of the identity element
of G.

If G is an analytic group and ^ its Lie algebra, then Aut(G)
may be identified with a closed subgroup of the linear group Aut(g^)
of automorphisms of <&. Under this identification, Int(G) coincides
with the adjoint group Int(S^), which is generated by eadx, J e g f where
ad denotes the adjoint representation of &. Thus the (CA) property
of analytic groups are entirely determined by their Lie algebras. In
particular, if G is a covering group of G and if G is (CA), then so is
G. This fact is used in the proofs of the main theorems.
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Throughout this paper the following notation is used: If A is a
subgroup of G, then IntG(A) denotes the subgroup of Int(G) which
consists of inner automorphisms induced by elements of A. Thus
IntG(G) is merely equal to Int(G). The center of G is denoted with
Z(G). Also if xeG, then Ix means the inner automorphism induced
by x.

2* Proof of Theorem A* Let H be a closed uniform subgroup
of an analytic group G, and Ho its identity component. Then H/Ho

is finitely generated. In order to see this, let G be the simply con-
nected covering group of G, H the complete inverse image of H under
the covering projection and So the identity component of 3. Then
since the covering projection induces an epimorphism H/Ho —> H/HQ, it
suffices to show that H/Ho is finitely generated. Nothing that G/HQ

is simply connected (see, for example, Mostow [7], Corollary 1, p. 617),
we can identify the discrete group H/Ho with the fundamental group
of the compact manifold G/H. As the fundamental group of a com-
pact manifold is finitely presented, it follows that H/HQ is, in particu-
lar, finitely generated.

Now we can apply a theorem of Hochschild ([5], Th. 2, p. 212)
to see that if H is a closed subgroup of an analytic group, then Aut(£Γ)
is a Lie group.

The following lemma enables us to assume that G is simply con-
nected.

LEMMA. Let H be a compactly generated Lie group and A a closed
discrete central subgroup of H. Let H = HI A. If H is a (CA) group,
then so is H. In fact, Int(H) is a topological extension of a discrete
group by Int(iϊ).

Proof. Let π: H-+&IA = H be the natural map and define χ:
Int(JΪ) —Int(iϊ) by χ(h) = Iπch), for heS

( i ) χ is continuous. To see this, note first that we can find a
compact nighborhood D of 1 in H which generates H. Now let C be
a compact subset of H and U a neighborhood of 1 in H. Then we
have to find a compact subset C of H and a neighborhood U of 1 in
H so that χ(N(C, U) Π Int(iϊ)) g N(C, U) Π Int(iϊ). Since πφ) - D
is also a compact neighborhood of 1 which generates H, we can find
a positive integer k such that C aDk by using the compactness of C.
Now letting C = Dk and U = π~~\U), it is easy to see that (C, U) is
a desired pair. Hence χ is cotinuous.

(ii) χ is open. In fact, since H is (CA), the canonical map
H/Z(H) —> Int(ίf) is an isomorphism of topological groups. Hence (ii)
follows from the following commutative diagram
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H/Z(H) > H/Z(H)

i I
lnt(H) > lnt(H)

where the left vertical map is always continuous and the top one is
open.

(iii) The kernel Ĵ Γ~ of χ is a discrete subgroup of Aut(JΪ) and
hence is closed in Aut(Jΐ). To see this let 3ίΓ be the closure of 3ίΓ
in Aut(ίf), and J l^ the identity component of 3?~. Since Aut(i?) is
a Lie group 3ίΓ\^t\ is discrete.

Since J%Γ = Ker(χ) and since A is central in H every element of
J3Γ induces the identity map on H = H/A and on A. Hence θ e JyΓ
implies that θ = 1 on A and θ = 1 on H = ίϊ/A, which implies that
Θ(h)h~ιeA for heβ.

Let hefϊ be arbitrary and define ηι\ 3F —> A by 3 (̂0) = θ(h)h~\
θ e J%^. Then rji is continuous and thus ijk(J%Γ0) is connected in the
discrete A. Since ^^(^^o) contains 1, rjiX^fl) — 1 and this then im-
plies that θ(h) = h for all θ e 3r*. Since h is arbitrary, j ^ ς = 1 and
3Γ is discrete. We have thus shown that 3ίΓ is a discrete sub-
group of Aut(iϊ) and hence J3Γ is closed in Aut(if).

(iv) Since (Int(#)/jr~ ^ Int(iϊ), Int(Jϊ) is closed in Aut(iϊ) as a
locally compact subgroup of Aut(i?) and the lemma is proved.

Now we are ready to present the proof of Theorem A. Let G
denote the simply connected covering group of G and let π be the cover-
ing homomorphism.

Then, by the lemma π~ι(H) = H is also uniform and (CA). Hence
no generality will be lost in assuming that G is simply connected. By
the assumption, Int(iϊ) is closed in Aut(H). Thus the canonical map
H/Z(H) —• Int(ff) is an isomorphism of topological groups. Define φ:
lntG(H) —> Int(JY) to be the restricting homomorphism and let 3ίΓ be
the closure of the kernel of φ, the closure being taken in Aut(G).
Then IntG(H)Sr is a subgroup of Aut(G). We define H/Z(H)->
IτAσ(H)3Γ/JZr and lntG{H)^Π^r -*Int(£Γ) to be the homomorphisms
induced by the canonical maps if—>IntG(H) and IntG(H) —> Int(ίί),
respectively. Then the following diagram commutes:

/ \
/ \

H/Z(H) > Int(H)

and all three maps are continuous and algebraically isomorphisms.
Since the bottom one is an isomorphism of topological groups, Int(iϊ)
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is topologically isomorphic with IntG(H)J?f/J?t~ and thus the latter is
a locally compact subspace of the quotient space Aut(G)/J%Γ. Hence
it is closed in Aut((τ)/j^"* and, accordingly, IntG(H)J%Γ is closed in
Aut(G).

We next claim that J ^ C Int(G). In fact, if θ e 3T, define P(g) =
θ(g)g-\ for g e G. Then P:G->G is continuous, and P(H) = {1} and
G/H compact imply that P(G) is compact. Thus we see that θ is an
automorphism of bounded displacement in the sense of Tits [8] and θ
is therefore an inner automorphism induced by a central element of
the nilradical of G ([8], Lemma (6), p. 102). Thus ^T S Int(G).

By what we have shown, it is clear now that the closure lntG(H)
of lntG(H) is contained in Int(G). Since G/H is compact and since
G/H —> lnt(G)/intG(H) is continuous, Int(G) is compact, modulo Intβ(H)
and hence Int(G) is closed, proving that G is (CA).

COROLLARY. // a solvable analytic group G contains a closed
abelian uniform subgroup, then G is a (CA) group.

COROLLARY. (See, Garland and Goto [3]). If a solvable analytic
group G contains a lattice, then G is a (CA) group.

REMARK. In [6], we have shown that any extension of a simply
connected (CA) group by a compact connected group is a (CA) group.
Thus Theorem A generalizes this for the solvable case.

REMARK. We have failed to see whether or not the nonexistence
of compact semi-simple normal subgroup in the theorem is necessary.
This was needed in order to apply the result of Tits in the proof.

3* Proof of Theorem B* In order to prove Theorem B, we
first note that an analytic group G is (CA) if and only if its radical
is (CA)(See Van Est [2]). Thus we may assume that the group in the
theorem is solvable.

Let g 7 be a finite-dimensional real solvable Lie algebra and let G
be an analytic group with its Lie algebra gf. If an exponential map
exp: & —• G is surjective, then the exponential map into its simply
connected covering group is a bisection. Thus by the remark in §1,
it suffices to prove:

THEOREM B'. Let & be a finite-dimensional real solvable Lie
algebra. If the exponential map is a bisection, then c& is a (CA)
Lie algebra (that is, the adjoint group Int(gf) is closed in Aut(gf)).

In order to prove this, we need the following lemma:
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LEMMA. Let ^V be the nilradical of &. If Xe^K then the
one-parameter subgroup {ead{tX): te R} is closed in Aut(S^).

Proof of lemma. Let T denote the given one-parameter subgroup.
We show if T is not closed, then T is trivial. In fact, if T is not
closed in Aut(^), then the closure T of T is compact. Define φ:
Aut(S^) —• Aut(^f) to be the restricting homomorphism. Since f̂"
is a characteristic ideal in &, φ is well defined and is continuous.

Now let ad,r denote the adjoint representation of the nilpotent
Lie algebra ^sK. Since ^V is nilpotent, IτΛ(^V) is closed in
([2], Proposition 1.2.2, p. 322), and thus φ{T)alτΛ(^V). By using
the fact that the maximal compact subgroup of any nilpotent analytic
group is contained in its center, it follows that Int(^^*) is always
simply connected. Hence the compact subgroup φ(T) must be trivial,
which means that ad^rX — 0 and so X is central in <yK.

Next we show that X is central in ^ . In order to see this, note
first that [X, Sf ] C gf' C ^K 5f' being the commutator subalgebra of
5^. Thus X being a central element of <yK implies that ad(X)2 = 0.
Therefore ead{tX) = 1 + ad(tX) for teR. Let Ye ^ be arbitrary.
Thus we have

exp (R[X, Y]) = exp (ad(RX)(Y)) - exp (ead{RX) - 1)(Γ)

= e x p ( ( Γ - l ) ( Γ ) ) .

Since T is compact, the closure of T — 1 is compact in the matrix
topology of End(S^), the ring of endomorphisms of the vector space
2f. Therefore, the continuity of exp implies that exp((Γ— 1)(Y)) is
bounded in G. Consequently, the one-parameter subgroup exp (R[X, Y])
is relatively compact. But G is simply connected and thus this one-
parameter subgroup must be trivial, which implies that ad(X) — 0
and we have proved that X is central in ^ . Therefore T = 1 as
desired.

Proof of Theorem B'. By a theorem of Goto ([4], Theorem III,
p. 165), it suffices to show that every one-parameter subgroup of Int(S^)
is closed in Aut(S^). Noting that every one-parameter subgroup of
Int(S^) is of the form ead{RX) for some Xe S ,̂ assume that there is a
nonzero X such that T = ead{EX) is not closed in Aut(S^). We see
from the lemma that X is not in ^K

Next we select a decreasing sequence of ideals of ^ :

5f o = Sf > Sfx > 5^2 > > S^»+i = (0)

such that dimΛ((ί^yg^+1) ^ 2. Let ^ denote the endomorphism on
which is induced by αd(X), i = 0, 1, , n. Then there exists
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p such that Av Φ 0. For, if A{ = 0 for all ί, then ad(X) would be
a nilpotent transformation and hence X e ^4^ which is impossible.
Since T is relatively compact in Aut(^), so is S = eRΛp in Aut(SySfp+1).
Since Ap is nonzero, S is nontrivial and thus dimR(^p/^p+1) = 2. Since
a maximal compact subgroup of A\it(^p/^p+1) is a circle group, it fol-
lows that S is a circle group in Aut(^y^7

p + 1). Now let π: ^ —
be the natural homomorphism and let .^^ be the sub-algebra of
which is generated by π(X) and Sy^p + i . Then from what we have
seen above, it is easy to see that έ%f is the Lie algebra of the group
of the rigid motions on the plane. Thus exp is not a bijection by the
well known theorem of Dixmier ([1], Th. 3, p. 120). Hence every one-
parameter subgroup of Int(^) is closed in Aut(S^), which proves the
Theorem B\

In the proof of Theorem B', we have actually shown that Int(^)
contains no compact subgroups. Hence we have:

COROLLARY. Let G be a solvable analytic group such that the
exponential map is surjective. Then Int(G) is simply connected.

COROLLARY. Let G be as above. Then Z(G) is connected.

Proof. By Theorem B, G/Z(G) = Int(G) is an isomorphism of
topological groups. Since Int(G) is simply connected, it follows that
Z(G) is connected.

REMARK. The coverse of the Theorem B is false. The group of
rigid motions on the plane is perhaps the simplest example.
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