
Pacific Journal of
Mathematics

COMMUTATIVITY IN LOCALLY COMPACT RINGS

JAMES B. LUCKE

Vol. 32, No. 1 January 1970



PACIFIC JOURNAL OF MATHEMATICS

Vol. 32, No. 1. 1970

COMMUTATIVITY IN LOCALLY COMPACT RINGS
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A structure theorem is given for all locally compact rings
such that x belongs to the closure of {xn: n ^ 2}, in particular,
all such rings are commutative, a result which extends a well-
known theorem of Jacobson. Similarly we show the commuta-
tivity of semisimple locally compact rings satisfying topological
analogues of properties studied by Herstein.

Jacobson has shown that a ring is commutative if for every x
there is some n{x) ̂  2 such that xn{x) = x [5, Th. 1, p. 212]. Herstein
has generalized this result, and certain of his and other generalizations
are of interest here. A ring is commutative if (and only if) for all x
and y there is some n(x, y)^2 such t h a t (χnix>y) — χ)y = y(χn{x>y) — x)

[4, Th. 2]; a ring is commutative if (and only if) for all x and y
there is some n(x, y) ̂  2 such that xy — yx — {xy — yx)Mx>y) [3, Th.
6]; a semisimple ring is commutative if (and only if) for all x and y
there is some n(x, y) Ξ> 1 such that xn{x'y)y = yxMX'y) [4, Th. 1] or if
for all x and y there are n, m ̂  1 such that xnym = ymxn [1, Lemma
1]. The investigation of analogous conditions for topological rings is
the major concern of this paper.

1. A topological analogue of Jacobson's condition* If xn — x
for some n Ξ> 2, then an inductive argument shows that x

k(n-v+1 — x

for all k ̂ > 1. A possible topological analogue of Jacobson's condition
would thus be that for every x there is some n(x) ̂  2 such that
lim^ χkι»w-1)+1 = x. But this implies that xn{x) = x, since

χMx) ^ χMx)-lχ ^ χ n W - l limk χkwx)-l)+i = l i m f c ί C ( * + lH»<*>-l>+l = x .

Thus all topological rings having this property have Jacobson's property
and hence are commutative.

A less trivial analogue of Jacobson's condition is that for every
x in the topological ring A, x belongs to the closure of {xn: n ̂  2}. In our
investigation of these rings, rings with no nonzero topological nilpotents
play an important role. Recall that an element x of a topological ring
is a topological nίlpotent if lim% xn — 0. We shall prove that a locally
compact ring has no nonzero topological nilpotents if and only if it is
the topological direct sum of a discrete ring having no nonzero nilpotents
and a ring B that is the local direct sum of a family of discrete rings
having no nonzero nilpotents with respect to finite subfields. From
this it is easy to derive a structure theorem for locally compact rings
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188 J. B. LUCKE

having the topological analogue of Jacobson's property mentioned above.

LEMMA 1. If A is a locally compact ring with no nonzero
topological nilpotents, then A is totally disconnected.

Proof. The connected component C of zero in A is a closed ideal
of A and so is itself a connected locally compact ring with no nonzero
topological nilpotents. By hypothesis, C is not annihilated by any of
its nonzero elements, for if xC = (0), then x2 = 0, so x = 0. Thus C
is a finite-dimensional algebra over the real numbers (cf. [6, Th. III]).
As the radical of a finite-dimensional algebra is nilpotent, C is a semi-
simple algebra. If C Φ (0), then by Wedderburn's Theorem, C has an
identity e, and clearly (1/2) e would then be a nonzero topological nil-
potent contrary to our hypothesis. Thus C = (0), and so A is totally
disconnected.

LEMMA 2. A compact ring A has no nonzero topological nilpotents
if and only if A is the Cartesian product of finite fields.

Proof. Necessity: By Lemma 1, A is totally disconnected. Thus
the radical J(A) of A is topologically nilpotent [11, Th. 14], and hence
is the zero ideal. Thus A is a compact semisimple ring, and so A is
topologically isomorphic to the Cartesian product of a family of finite
simple rings [11, Th. 16]. A finite simple ring is a matrix ring over
a finite field, and unless the matrix ring is just the finite field itself,
it will have nonzero nilpotent elements. Thus as A has no nonzero
nilpotents, A is topologically isomorphic to the Cartesian product of a
family of finite fields. Sufficiency: Clearly zero is the only topological
nilpotent in the Cartesian product of a family of finite fields.

LEMMA 3. If A is a ring with no nonzero nilpotents, then every
idempotent is in the center of A.

Proof. If e is an idempotent and if aeA, an easy calculation
shows that (ae — eae)2 — 0, hence ae — eae — 0. Similarly, ea = eae
and thus ae — ea.

We recall that the local direct sum of a family (Ar)rer of topological
rings with respect to open subrings (Br)reΓ is the subring of the
Cartesian product Y[rAr consisting of all (ar) such that areBr for all
but finitely many 7, topologized by declaring all neighborhoods of zero
in the topological ring Y[rBr to be a fundamental system of neighbor-
hoods of zero in the local direct sum. It is easy to see that the local
direct sum equipped with this topology is indeed a topological ring.
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THEOREM 1. A locally compact ring A has no nonzero topological
nilpotents if and only if A is the topological direct sum of a discrete
ring having no nonzero nilpotents and a ring B {possibly the zero
ring) that is topologically isomorphic to the local direct sum of a
family of discrete rings having no nonzero nilpotents with respect
to finite subfields.

Proof. Necessity: As A is totally disconnected by Lemma 1, A
contains a compact open subring F [7, Lemma 4]. By Lemma 2, F
is topologically isomorphic to the product of finite fields. Consequently
there exists in F a summable orthogonal family (er)reΓ of idempotents
such that Fer is a finite field and X r e Γ e r = e, the identity of F.

By Lemma 3, e is in the center of A, so Ae and A(l — e) = {a — ae:
aeA} are ideals. The continuous mappings a—>ae and α —> (a — ae)
are the projections from A onto Ae and A(l — e). Thus A is the
topological direct sum of Ae and A(l — e). As e is the identity of
F, F Π A(l — e) = (0). Thus as F is open, A(l — e) is discrete and
hence has no nonzero nilpotents.

As F is open and as Aer Π F = Fer, a finite field, Aer is discrete
and is an ideal as er is in the center of A. Consequently Aer has no
nonzero nilpotents. It will therefore suffice to show that B = Ae is
topologically isomorphic to the local direct sum of the descrete rings
Aer, with respect to the finite subfields Fer.

Let B' be the local direct sum of the Ae/s with respect to the Fe/s.
Let K:b—>(ber) e Πr Aer. Clearly b —>ber is a continuous homomorphism
for each 7, hence K is a continuous homomorphism from B into ΐ[rAer.
lϊ be Bf then (ber) is summable and Σ r ber = δ(Σr er) = be = b. There-
fore as F is open in B, bereF f] Aer = Fer for all but finitely many
7 6 Γ. Thus K(B) s B'.

The mapping K is an isomorphism onto K(B), since if xeB and
if xer — 0 for all 7 e Γ, then x = xe — x(Σr er) = Σ r xer — 0- Let yβ e Feβ,
and let xr = 0 for all 7 ^ β,xβ = yβ; then (xr) = K(yβ) e K{F) since (er)y
is an orthogonal family. Thus K{F) contains a dense subring of ]JrFer,
and hence K(F) = Πr ^ e r a s K(F) i s compact. As the restriction of
K to F is thus a continuous isomorphism from conpact .Fonto TJrFer,
F is topologically isomorphic to Πr Feγ under K.

Thus it sufficices to show that K(B) a β', for i ί is then, by the
definition of the local direct sum, a topological isomorphism from B
onto Bf. If (brer) e B', then breγ e Fer for all but finitely many 7, say
7i, , 7W. Call this set Λ and let Γ - Γγ = Γ2. Thus χ r e Γ l 6rer e 5
and brer e F for all 7 e Γ2. Hence as F is topologically isomorphic to
Πr Fer, bf = Σrer2 brer e JB. Thus 6 = 6' + Σ r e ^ 6rer e J?, and ber = brer,
so K(b) = (brer). The sufficiency is clear.
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We will call a ring A a, Jacobson ring if given any x e A there is
an n(x) ^ 2 such that xn{x) = x. All Jacobson rings are commutative
[5, Th. 1, p. 212], and in extending this result to topological rings
we give the following definition, noting that it reduces to Jacobson's
condition in the discrete case.

DEFINITION. A topological ring A is a J-ring if for each x eA,x
belongs to the closure of {xn: n ^ 2}.

LEMMA 4. If A is a J-ring, then A has no nonzero topological
nilpotents.

Proof. If \\mn x
n = 0, then since x belongs to the closure of

{xn: n ^ 2}, we conclude that x = 0.

THEOREM 2. A locally compact ring A is a J-ring if and only
if A is the topological direct sum of a discrete Jacobson ring and a
ring B which is topologically isomorphic to the local direct sum of
a family of discrete Jacobson rings with respect to finite subfields.

Proof. Necessity: By Theorem 1 and Lemma 4, A is the topologi-
cal direct sum of a discrete ring C and a ring B which is topologically
isomorphic to the local direct sum of a family of discrete rings with
respect to finite subfields. As each of these rings is an ideal of A,
each is a discrete J-ring and so is a Jacobson ring.

Sufficiency: Let B be the local direct sum of a family of discrete
Jacobson rings Bn 7 e Γ with respect to finite subfields Fr, 7 e Γ. Let
(xτ) e B and let U be a neighborhood of zero in B. Then we may
assume that there is a finite subset A of Γ such that xr e Fr for all
7 ί A and U = ΐlrGr, where Gr = Fτ for all 7 ί A. For each Ύ eA, let
n(y) > 1 be such that xpr) = xr. Let n = 1 + Πrej (w(τ) — 1). An
inductive argument shows that x™ — xr for all y e A. Hence (xr)

n —
(xγ) e U. Thus B is a J-ring, and consequently A is also a J-ring.

As all Jacobson rings are commutative we have the following
analogue of Jacobson's Theorem:

COROLLARY. A locally compact J-ring is commutative.

THEOREM 3. A locally compact ring A is a Jacobson ring if and
only if there exists N ^ 2 such that A is the topological direct sum of
a discrete Jacobson ring and a ring B that is topologically isomorphic
to the local direct sum of a family of discrete Jacobson rings with
respect to finite subfields of order ^ N.
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Proof. Necessity: Let | Br \ — the order of Br. By Theorem 2
it suffices to show that sup | Bγ | < + °o. If sup \Br\ = + °°, then
there exists (xr) e Y[r Br such that the orders of the x/s are unbounded.
Consequently for no n does Xj — xr for all 7, i.e., for no n does {xγ)

n = (#r).
Sufficiency: Let (Ar)reΓ be a family of discrete Jacobson rings with

finite subfields Br such that | Br | ^ N for all 7. Let (#r) be in the
local direct sum of the A/s with respect to the l?/s. There exists
a finite subset A of Γ such that if 7 $ A, xr e l?r. Since each Ar is a
Jacobson ring, for 7 e A there is n(i) such that xfτ) — xr.

If Xγ{γ) = α;r, an inductive argument shows that x ^ ^ - 1 ^ 1 = Xγ for
all λ\ If xr e Br, then | Br | ^ JV, so since | Br | - 1 < N, x\+k{N[) = xr

for all jfc. Let n = 1 + [(JV!) ΐlreJ (n(y) - 1)]. Then xn

r = a;r for all
7, i.e., (αv)* = (xr).

2 Analogues of four of Herstein's results* An analogue for
topological rings of the first of Herstein's conditions that are mentioned
above is that for all x and y, xy — yx is in the closure of {xny — yxn: >̂ 2},
and we say such a topological ring is an Hiring. An analogue of the
second of Herstein's conditions is that for all x and y, xy — yx is in
the closure of {(xy — yx)n: n >̂ 2}, and we say such a topological ring
is an H2-rίng. (If (xy — yx)n{x'y) = xy — ##, then

*'2/)-1]+1 = xy - yx

for all fc ̂  1; hence another topological analogue is the assumption that
for each x, y e A, there exists n(x, y)^2 that lim^ (xy — 2/sc)*[n(aj'l')-1]+1 =
xy — yx; however by an argument similar to that of the first paragraph
of § 1, this condition implies that (xy — yx)n{x'y) — xy — yx.) Similarly
an analogue of the third of Herstein's conditions is that for all x, y
in A, lim% xny — yxn — 0, and we say such topological rings are H3-rίngs,
just as we will call H±-rings those topological rings in which for all
x, y there is an m(x, y) ^ 1 such that \imnx

nym{x'y) — ym^x>^χn = 0. We
shall prove that those Hi-rings which are semisimple and locally compact
are commutative, i — 1, 2, 3, 4.

LEMMA 5. All ίdempotents in an Hiring, i — 1, 2, 3, 4, commute.

Proof. Let e and / be idempotents in such a ring A. Then
(efe - eff = 0, so {(efe - ef)ne - e(efe - ef)n: n ^ 2} = {0}. Therefore,
if A is an iϊi-ring, then (efe — ef)e — e(efe — ef) = 0, so

0 = (efe-ef)e = e(efe - e/) = efe - ef.

If A is an iϊ2-ring, then (ef)e — e(ef) = β/e — e/ = 0 since e/e — β/ is
in the closure of {[(ef)e — e(ef)]n: n ^ 2} = {0}. Similarly in either case
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efe = fe, so ef=fe. As 0 = limn e
nf-fen = limΛ e

nfm - fmen = ef-fe,
the assention also holds for H3 and iϊ4-rings.

Since it is clear that all subrings and quotient rings determined
by closed ideals of Hi-rings are Hi-rings, i = 1, 2, 3, 4, and since all
idempotents in such rings commute, we see that the following is
applicable.

LEMMA 6. Let P be a property of Hausdorff topological rings
such that:

(1) if A is a Hausdorff topological ring with property P, then
every subring of A has property P and A/B has property P where
B is any closed ideal of A,

(2) if A has property P, then all idempotents in A commute.
If A is a locally compact primitive ring with property P, then A
is a division ring.

Proof. Since A is a semisimple ring, A is the topological direct
sum of a connected ring B and a totally disconnected ring C, where
B is a semisimple algebra over R of finite dimension [7, Th. 2]. As
A is primitive, either A = B or A — C. In the former case A is a
matrix ring since it is primitive, and so has idempotents which do
not commute unless it is a division ring.

It suffices, therefore, to consider the case in which A is totally
disconnected. We shall first prove the assertion under the additional
assumption that A is a Q-ring (i.e., the set of quasi-invertible elements
is a neighborhood of zero). We may consider A to be a dense ring of
linear operators on a vector space E over a division ring D. If £7 is
not one-dimensional, then E has a two-dimensional subspace M with
basis {z19 z2}. Let B = {a e A: a(M) C M}9 and let

N = {α G A: a(M) = (0)} = K1ViKz

where K{ = {ae A: a(z{) = 0}, i = 1, 2.
There exists u e A such that u{zx) = z19 and hence x — xu e Kγ, for

all xe A. If v £ K^ then there exists we A such that wv{z^ = zlf so as
u = wv + (u — wv) and u — wv e Kί? A = Au + Kλ = Av + Kx. There-
fore K19 and similarly K2, is a regular maximal left ideal, an observation
of the referee that simplifies the proof. Hence K1 and K2 are closed
(cf. [11, Th. 2]), so N is a closed ideal of B. By hypothesis B/N is
therefore a Hausdorff topological ring having property P. Thus all
idempotents in B/N commute; but B/N is isomorphic to the ring of
all linear operators on Λf, a ring containing idempotents which do not
commute. Hence E is one-dimensional and A is a division ring.

Next we shall show that A is necessarily a Q-ring, from which
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the result follows by preceding. As A is totally disconnected A has a
compact open subring D [7, Lemma 4]. If D = /(D), the radical of
Z), then D and hence A are Q-rings. Assume therefore that J φ ) c D .
We shall show that D/J(D) is a finite ring and hence is discrete.

The radical, J(D), of D is closed [8, Th. 1], D//(Z>) is compact
semisimple ring and thus D/J(D) is topologically isomorphic to the
Cartesian product of a family (Fr)reΓ of finite simple rings with identities
(fr)7er [11, Th. 16]. As J(D) is topologically nilpotent [11, Th. 14], D
is suitable for building idempotents [12, Lemma 4] (cf. [11, Lemma 12]).
Suppose that Γ has more than one element, say {a, β) £ Γ. Then there
are nonzero orthogonal idempotents ea, eβ in D such that ea + J(D),
eβ + J(D) correspond, respectively, under the isomorphism to (/"), (//)
where // = 0 e Fr if 7 Φ λ and // = /;.. Let ^ be the canonical mapping
x->x + J(D) from Z> onto D/J(D). As (/r

α) + (//) annihilates the open
neighborhood J\ϊeΓGr of zero where Gα = {0}, Gβ = {0}, and Gr = .Fr for
7 =£ a, β, we conclude that φ(ea + ê ) annihilates a neighborhood V of
zero in D/J(D). Consequently U = ^ - 1 ( F ) is a neighborhood of zero
in D, and (eα + eβ)U(ea + ê ) S J(i?) (cf. [7, proof of Th. 11]). Therefore
as (ea + eβ)U(ea + eβ) = U Π (ea + β^)A(β« + eβ), (ea + ^)C7(βα + eβ) is a

neighborhood of zero in (ea + eβ)A(ea + ê ) consisting of quasi-invertable
elements, so (ea + eβ)A(ea + ^) is a Q-ring. As (ea + ^)A(eα + eβ) is
primitive [6, Proposition 1, p. 48] and is clearly closed, (ea + eβ)A(ea + eβ)
is a locally compact, primitive <E?-ring with property P, so (ea + eβ)
A(ea + ê ) is a division ring. But it contains nonzero ea, eβ satisfying
eaeβ = 0, a contradiction. Thus Γ can contain only one element, so
D/J(D) is isomorphic to a finite ring. Hence J(D), being closed in D,
is open in D and thus in A, so A is a Q-ring.

LEMMA 7. // A is an Hiring, % — 1, 2, 3, 4 <md ί/ A is α locally
compact division ring, then A is a field.

Proof. If A is discrete and is an i ί r r i n g (i — 1, 2, 3, 4) then A
is commutative [3, Th. 2; 4, Th. 1; 3, Th. 1; 1, Lemma 1].

If A is not discrete, then A has a nontrivial absolute value giving
its topology, and A is a finite-dimensional algebra over its center, on
which the absolute value is nontrivial [10, Th. 8].

If A is an ίZΊ-ring and x is nonzero in A, then there exists some
nonzero z in the center of A such that \z\ < l/\x\. Thus \xz\ < 1,
so lim% (xz)n = 0. Hence for any y e i , limw (x2)%?/ — y(xz)n = 0, so as
(xz)y — y(xz) is in the closure of {(xz)ny — y(xz)n: n ^ 2}, 0 — (#3)3/ —
2/(&2) = z(xy — yx). Hence xy = yx, as z Φ 0. Thus A is commutative.

If A is an ijΓ2-ring and if x, y e A satisfy xy — yx Φ 0, then there
exists some nonzero z in the center such that | z \ < 1/| xy — yx |. Thus
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I (xz)y — y(xz) | < 1, so lim% [(xz)y — y(xz)]n = 0. Hence 0 = (xz)y —

y(xz) = (xy — yx)z, so xy — τ/x = 0 as z Φ 0, a contradiction. Thus A
is commutative.

Assume that A is an Hiring. As A is a division ring, A is either
totally disconnected or connected [7, Th. 2].

Case 1. A is totally disconnected. Then the topology of A is given
by a nonarchimedean absolute value. Suppose A is not commutative.
Then as A is a finite-dimensional and hence an algebraic extension of
its center C, there exists some x £ C having minimal degree m > 1 over
C. Let y be arbitrary in A, and assume that for no 1 <^ i <^ m — 1,
does 8*2/ = yx\ Hence x*y — yxι Φ 0, 1 <̂  i ^ m — 1, and we claim
{x*y — yx{: 1 <, i ^ m — 1} is a linearly independent set over C.
Suppose ΣJΆ1 βi&V - y&) = Q> where fteC, and let 2=Σ?-Ί 1 fta;\
Then 22/ = yz. By the definition of m, either 2 6 C on 2 has degree ^ m
over C. Suppose 2 ί C. Then C[x] has dimension m over C, so m is
the degree of 2 as 2eC[ ίφ Therefore C[x] = C[2;], so as zy = yz,
every element of C[x] commutes with y, contrary to our assumption.
Thus 2 e C; let -/3 0 = 2. Then Σ S 1 / 3 ^ = 0, so β{ = 0, 0 ^ i ^ m - 1
since {1, a;, , xm~1} is linearly independent over C.

Since # is algebraic of degree m over the center C of A, there
exist α^eC, 0 < £ i ^ m — 1, such that xm = ΣKo1 αί χ ί» ^ u s for all
n^ m, there exist α i ) Λ G C, 0 ^ i ^ m - 1, such that xn — ΣΓ="oι ^i,n^
We may also assume that | x | > 1, since all our assumption on x are
true for any Xx, λ e C * . We note that there is therefore some r such
t h a t I x I, 0 ^ i ^ m - 1.

Since ίcn =

xny - yxn = - yxι)

so l im % xny — τ/a;% = 0 if a n d only if l im % α i ) W = 0, 1 <> i <L m — 1.

Since | £ % | ^ m a x {| aitn \ \ x \{: 0 ^ i ^ m - 1}, if | α ί t n | < 1,1 <£ ϊ ^

m — 1, then
lim% αί>% = 0,
for all n^n

a0>n |. Let r0 be such that | x |r° > | x \ + 1. Since
<^ΐ<^m — 1, there exists w0 > r + r0 such that | aitn \ < 1,
and all i such that 1 <̂  i ^ m — 1. But for any n > n0,

SO

^ I x \n — I a, I ^ I a;

- I α»_i,

a contradiction. Hence A is commutative.
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Case 2. A is connected. Then the center C of A contains the
real number field R, A is finite-dimensional over R, so the degree of
each element of A over R is less than or equal to 2, and the topology-
is given by an absolute value. Suppose x$C. Then deg x = 2; let

x2 = aγ + α2α;, and for each n ^ 2, let x% = # l f W +
a2>n e R. As before we may assume that | x | > 1.

#, where altn,
Let r be such that

I x \r > max {| ^ |, | α21}. Let p i be such that xy Φ yx. Then 0 =
limπ (xny - yxn) = limΛ a2,n(xy - yx), so lim% α2,w = 0. Let nQ> r be
such that I a2>n | < 1 for all n ^ n0. But if w ^ nQ is such that | x \n > 3

X then

\ X \n = \ (X 4- Cί # <C (X \ -\- \ GC X

s o I x n I — I x I < I a l 9 n \ . A s

\x ,

xn = aunx + ^ ^ ( ^ + a2x) = ^^Λi

* 2 , w + i I = vl ^ J
contradiction. Hence

^ 3 Γ r a; Γc*2,w+i I = vl J

is commutative.
Finally let A be an iJ4-ring. If for all x and y, lim^ ^ — yxn = 0,

then A is an i^-ring and so a field; so assume there are x and y in
A such that limw x%τ/ — yxn Φ 0. Let W = {w e A: limπ x

nw — wxn = 0}.
Clearly W is a division subring of Ay and since y g W, W is a proper
division subring. By hypothesis, for all α e i there is an r ^ 1 such
that are W; thus A is a field [2, Th. B].

THEOREM 4.

are commutative,
Hi-rings that are locally compact and semisimple

i = 1, 2, 3, 4.

Proof. P is a primitive ideal of such a ring A if and only if
P = (B: A) (by definition (B: A) = {x e A: Ax £ B}) where B is a regular
maximal to left ideal [5, Corollary to Proposition 2, p. 7]. Let ee A be
such that x — ex e B for all xe A. If x e (B: A), then ex e B, so x e B.
Hence (J5: A) S #•

If JB is closed, then (5: A) is closed for if (xa) is a directed set
of elements of (B: A) converging to x, then for all ae A, axa e B,
whence ax — lim axa e B.

As A is semisimple, (0) = Π {B: B is a closed regular maximal left
ideal} 3 f| {P: P is a closed primitive ideal} [8, Th. 1]. By Lemma 6
and 7, A/P is a field if P is a closed primitive ideal. Thus for all
x, y G Ay xy — yx e P, so xy — yx e f\ {P: P is a closed primitive
ideal} = (0).
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