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Let (X, d) denote a metric space, L.(X) the ring of real
valued functions on X which are Lipschitz on each compact
subset of X, L;(X) the ring of real valued functions on X
which are locally Lipschitz relative to the completion of X,
and L *X), L;*(X) the bounded elements of L.(X), L,(X). The
relations between equality of these rings and the topological
properties of X are studied, It is shown that a subspace (S, d)
of (X,d) is L.,~embedded (or L *-embedded) in (X, d) if and
only if S is closed. Further, every subspace of (X, d) is L;-
and L,*-embedded in (X, d).

Su [3] investigated algebraic properties of the rings L. (X) and
L#(X) similar to those of C(X) and C*(X) by Gillman and Jerrison

[2].

2. Equality of rings. Let f denote a real valued function de-
fined on X. f is Lipschitz on Sc X if and only if there is a real
number m, called a Lipschitz constant for f on S, such that if =,
ye 8, then | f(x) — fy)| < md(x, y). f is locally Lipschitz on X if
and only if for each x ¢ X, there is a neighborhood N of x such that
f is Lipschitz on N. If comp X denotes the completion of X, then f
is locally Lipschitz with respect to comp X if and only if for each
x e comp X there is a neighborhood N of x such that f is Lipschitz on
NN X.

THEOREM 2.1. fe L.(X) ¢f and only if f is locally Lipschitz on
X.

Sufficiency. Let f be locally Lipschitz on X and S a compact
subset of X. Then there exists a finite collection N, N,, -++, N,, of
open sets covering S, on each of which f is Lipschitz and thus bounded.
Assuming f is not Lipschitz on S implies that there exists a sequence
{z,} from S converging to x<c S and a sequence {y,} from S such that
| f(z,) — f(,)]/d(x,, y,) > n for each positive integer n. Since f is
bounded on S, it follows that {y,} converges to x. Since xe N; for
some j =1,2, .-+, m, f is not Lipschitz on N; which contradicts the
definition of N;.

Necessity. Let fe L,(X) and x ¢ X. Assuming f is not locally
Lipschitz at 2 implies there exists sequences {x,} and {y,} such that
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@, v,) <1/n, d(x, y,) < 1l/n, and |f(2,) — fy.)|/d&,, y,) > n. Then
{p:pe{x,}, pe{y,}, or p = x} is a compact subset of X on which f is
not Lipschitz.

COROLLARY 2.2. fec L¥*(x) tf and only if f is locally Lipschitz
on X and bounded.

Proof. Follows immediately from the definition of L}*(X).
COROLLARY 2.3. L(X)C L(X) and L¥X)C L}X) .

Proof. If f is locally Lipschitz relative to com X, then f is
locally Lipschitz.

LeEMMA 2.4. If K is a untiformly bounded set of Lipschitz func-
tions defined on Sc X and there is a real number m which is a
Lipschitz constant for each element of K, then f(x) = sup {g(x): g K}
for each xc S is Lipschitz on S and m is a Lipschitz constant for

fon S.

Proof. f exists since K is a uniformly bounded set. Assume
xeS,yeS, and

(1) fy) — f(@) — md(x,y) =e>0.
Let g€ K such that

(2) Fw) —9y) <e,

then

(3) 9(y) — g(@) = md(x, y) .

Combining (2) and (3) yields f(y) — g(x) — md(x, ¥) < ¢, which when com-
bined with (1) gives f(x) < g(x). This contradicts the definition of f.

LEMMA 2.5. Suppose each of ¢ and » >0, pe X, and for

(¢/r)fr — d(x, p)} for d(x, p) =,

h X, f(x) = .
sach we @) {O otherwise

then f is Lipschitz on X and (¢/r) is a Lipschitz constant for f on
X.

Proof. Let g(x) = (¢/r){r — d(x, p)} for each x€ X. Then for z,
ye X,
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9(®) — 9(y) = 9(®) — g(p) + 9(p) — 9(¥) ,
9(@) — g(y) = —(¢/r)d(x, p) + (¢/T)d(y, p) ,

and g(x) — 9(y) < (¢/r)d(x, y) by the triangle property. Since sup {g, 0}
is Lipschitz with a Lipschitz constant sup {(¢/r), 0} by Lemma 2.4, the
conclusion follows.

THEOREM 2.6. Fach of the following 1is equivalent to each of
the others:

(1) L(X) = L),
(2) LXX)=LXX), and
(3) X 1s complete.

Proof. (1) = (2) obviously. The remaining order is (2) = (3) = (1).

Assume (2) and that X is not complete. Then there exists an
x € (comp X) — X and a sequence {x,} of distinect points in X such
that {x,} converges to x. For each odd integer =, let

r, = _;_inf {y:y = d®,,x,) for m=n or y=(1n)},

Cx,, r,) = {te X:d(¢t, z,) < 7.},
and
/v ){r, — d=,, t)} for teC(zx,, 7,)
0 otherwise

fa(t) =

for each te X. Let f(t) = sup {f.(¢)} for each te X. If S is a compact
subset of X, then S can intersect at most a finite number of the
elements of {C(x,, 7,)} and since only a finite number of elements of
{f.} are nonzero on S, by Lemma 2.4 f is Lipschitz on S and f e L*(X).
For each neighborhood N in comp X of z, there is a point ¢t N and
a point y € N such that f(¢{) =1 and f(y) = 0. Thus f¢ L,(X) and by
contradiction, (2) = (3).

If 3) is true, fe L(X) if and only if f is locally Lipschitz.
Thus by Theorem 2.1, L(X) = L,(X) and (3) = (1).

THEOREM 2.7. LX) = L¥X) if and only if X is compact.

Proof. If X is compact, then each element of L.(X) is bounded.
Assume L, (X) = L¥*(X) and X is not compact. Then there exists
a sequence {x,} of distinct points in X which has no convergent sub-
sequence. Let
1

rn:%inf{y:y:d(xn,mm) for n=#m or y:——},
n
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and

. (1’&/7'%){1"% - d(xn1 ./X/')} for d(mn! x) é Tr
~ |0 otherwise

S ()

for each xe X. By an argument similar to the one for Theorem 2.6,
fe L/ (X). Since f(x,) = n for each n, fe L,(X) — L¥(X) which contra-
dicts the assumption.

THEOREM 2.8. L,(X) = L{(X) if and only if comp X is compact.

Proof. Each element of L,(X), LF(X) can be uniquely extended
to an element of L,(comp X) = L.(comp X), L{f(comp X) = L}(comp X).
Since L,(comp X) = L¥(comp X) if and only if comp X is compact by
Theorem 2.7, the conclusion follows.

3. If A denotes one of L, L}, L, L and S C X, then the state-
ment that S is A-embedded in X means that if fe A(S), there is a
ge A(X) such that ¢g|S = f where g|S = {(x,y)cg:xeS}.

THEOREM 3.1. If S is a subset of X, then each of the following
1s equivalent to each of the others:

(1) S is L,-embedded in X,
(2) S is Lf-embedded in X, and
(8) S is closed.

Proof. Czipszer and Geher [1] proved that if S is a closed subset
of X and f is a real valued locally Lipschitz function with domain S,
then there is a real valued locally Lipschitz function g with domain
X such that g|S = f. Furthermore, they proved that if f is bounded,
then there exists a bounded such g. Consequently, by Theorem 2.1,
(8) = (1) and (3) = (2).

Assume (2) and S is not closed. Then there exists a sequence
{z,} of distinct points in S and a point x€ X — S such that {x,} con-
verges to x. Construct f as in Theorem 2.6. Then fe L}(S) which
has no extension to X in L, (X). Thus (2) = (3). Note that this also
shows (1) = (3).

COROLLARY 3.2. FEwvery subset of X is L,-embedded and L}-em-
bedded in X.

Proof. If Sc X, then every element of L,(S) has a unique ex-
tension to the closure of S in comp X and by Theorems 2.6 and 3.1
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an extension in L,(comp X) which when restricted to X is an element
of L,(X).
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