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SEMI-SIMPLE RADICAL CLASSES

PATRICK N. STEWART

The purpese of this paper is to characterize all semi-simple
radical classes (those classes of rings which are semi-simple
classes and at the same time radical classes).

Andrunakievic has shown that the class of Boolean rings is a semi-
simple radical class. More recently, Armendariz has considered such
classes.

For “I is an ideal of the ring R” we shall write “I <] R”.

Following Divinsky [6], but substituting classes of rings for ring
properties, we define:

(1) A nonempty class of rings & is a radical class if and only
if & satisfies the following conditions:

(A) Homomorphic images of rings in & are in & .

(B) Every ring R has an ideal %" (R) e % such that if I <{ R and
Iec % then IS & (R).

(C) The only ideal of the factor ring R/Z"(R) which is in & is
the zero ideal.

(ii) If = is a radical class, a ring R is & semi-simple if and
only if &€ (R) = (0).

(iii) A nonempty class of rings & is a semi-simple class if and
only if & satisfies the following conditions:

(E) Every nonzero ideal of a ring in & can be homomorphically
mapped onto a nonzero ring in & .

(F) If every nonzero ideal of a ring R can be homomorphically
mapped onto a nonzero ring in & then Re & .

2. Rings without nilpotent elements. Our purpose in this
section is to establish:

THEOREM 2.1." A ring R without nilpotent elements is isomorphic
{to a subdirect sum of rings without proper divisors of zero.

It will be convenient to first prove:

LemMmA 2.2, If R has no nilpotent elements and 0 = x e R then
(i) z,={yeR:zy =0} <|{R and z, =z, = {yc R: yx = 0},
(i) xz¢uwx,

1 The author wishes to thank the referee for pointing out that this result has
also been obtained by V. Andrunakievic and Ju. M. Rjabuhin, Rings without nilpotent
elements, and completely simple ideals, Dokl. Akad. Nauk. SSR. 180, 9-11 (Translation,
Soviet Mathematics 9 (1968), 565-568).
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(iii) if re R and rxcx, then reux,,
(iv) the factor ring R/x, has no nilpotent elements.

Proof. Let R be a ring with no nilpotent elements and 0 = x ¢ R.
If aecR and ax = 0 then (za)* =0 so xa = 0. Similarily if xa = 0
then ax = 0. This establishes (i). Since x* == 0, (ii) is clear. If a,
beR and ab* = 0 then (bab)* =0 so bab = 0, but then (ab)*=0 so
ab = 0. From this (iii) and (iv) follow immediately.

To prove the theorem it is sufficient to find, for each 0 # x ¢ R,
an ideal I(x) of R for which R/I(x) has no proper divisors of zero and
c¢l(x). Let Z(x) = {I < R:x¢l, if re el then rel, and R/I has no
nilpotent elements}. By 2.2 z, ¢ Z(x) so Z(x) +# @ and it is clear that
the union of an ascending chain in Z(x) is also in Z(x). Thus we may
choose, by Zorn’s Lemma, I(x) maximal in Z(x).

IfacRanda¢I(x) let J ={yeR:ayecl(x)}=21(x). Then J/I(x) =
(@ + I(z)), in R/I(x) and by 2.2 (i) (a + I(z)), = (a + I(x)), < R/I(z).
Since a ¢ I(x), ax ¢ I(x) sox ¢ J. If rx e J then arx € I(x) so ar € I(x), hence
redJ. Finally by 2.2 (iv)R/J = R/I(x)/J/I(x) has no nilpotent elements,
so Je Z(x). Hence J = I(x) so R/I(x) has no proper divisors of zero.

Note 2.3. The generalized nil radical Ng of Andrunakievic [4]
and Thierrin [10] (see also [6]) is the upper radical with respect to
the class of rings without proper divisors of zero. A ring R is Ng
semi-simple if and only if R is isomorphic to a subdirect sum of rings
without proper divisors of zero. In this context, 2.1 can be restated
as: A ring R is Ng semi-simple if and only if R has no nilpotent
elements.

3. F-rings. If xc R, let [2] = the subring of R generated by x.
DEFINITION 3.1. R is a 2z,-ring .=. for all xe R, [z] = [z]~

Let R be a ring and e R. Clearly [«¢] = [«] if and only if x € [z]*
if and only if there are integers a,, ---, a, such that & = 3%, a;a%.
Using this it is clear that homomorphic images of <Z,-rings are <7,-
rings and that if A/B and B are <#Z,-rings then A is a <Z-ring. It
then easily follows that the class of .2 -rings (which we shall denote
by 7)) is a radical class.

LEMMA 8.2. A nonzero ZZ,-rimng without proper divisors of zero
1s a field of prime characteristic which is algebraic over its prime
subfield.

Proof. Let R be a nonzero .7,-ring without proper divisors of



SEMI-SIMPLE RADICAL CLASSES 251

zero. If x is a nonzero element of R there are integers a,, ---, a; such
that « = >, a;2%, hence ¢, = 3%, a, 2" is an identity for [#]. Since
x is not a zero divisor e, is an identity for R. If we R, w # 0,
¢, € [w] = [w] so e, e[w]-w< Rw thus R = Rw. Since R is nonzero,
R is a division ring.

Let ¢ be the identity of R. Then [2¢] = [2¢]* = [4¢] so Ne = 0
for some positive integer N. Consequently the characteristic of R is
a prime and since ¢ = ¢, € [w] for all nonzero we R, R is algebraic
over its prime subfield. Therefore, by Theorem 2, page 183 of Jacobson
[7] R is a field.

COROLLARY 3.3. If R is a ZZ-ring then R 1is isomorphic to a
subdirect sum of algebraic fields of prime characteristic. So, in
particular, R is commutative.

Proof. If zeR,2¥ =0and Re 2%, then [¢] =[z]}=--- =[2]" =
(0) so x = 0. Hence .<#,-rings do not have nilpotent elements so the
corollary follows from 2.1 and 3.2.

THEOREM 3.4. A ring R 1s a Z-ring if and only if every
finitely generated subring of R is isomorphic to a finite direct sum
of finite fields.

Proof. Let Re <%, and R’ be a finitely generated subring of R.
Then R’e€ <z, and hence is commutative, so by the Hilbert Basis
Theorem R’ has maximum condition on ideals. If P’ = R’ and P’ is
a prime ideal of R’ then P’ is a maximal ideal of R’ since by 3.2 R'/P’
is a field. Since R’ is finitely generated, commutative, and [¢g] has an
identity for each generator g of R’, R’ has an identity. Then by
Theorem 2, page 203 of [11] R’ has minimum condition on ideals. But
then R’ is a commutative Wedderburn ring so R’ is isomorphic to a
finite direct sum of fields each of which must be finite since they are
finitely generated, algebraic and of prime characteristic.

The converse is obvious; in fact, if x ¢ R’ and R’ is isomorphic to
a finite direct sum of finite fields then there is an integer n(x) = 2
such that 2z = x. Thus we have:

COROLLARY 3.5. R s a #-ring if and only if for each xe R
there exists an integer n(x) = 2 such that x"” = wx.

A class of rings & is said to be hereditary if I <| Re % implies
that 7€ Z. Analogously we say:

DEFINITION 3.6. A class of rings & is strongly hereditary .=
if S is a subring of Re % then Se%.



252 P. N. STEWART

PropoSITION 3.7. If F s a strongly hereditary finite set of
finite fields then a ring R is isomorphic to a subdirect sum of fields
wm F if and only if every finitely generated subring of R is 1so-
morphic to a finite direct sum of fields in F .

Proof. Since & is a finite set of finite fields there exists an in-
teger N = 2 such that #V = 2 for all xe FFe. & .

Let R have ideals I,-acA such that R/I, = F,c. % and
N{l,:ae A} = (0). Let R’ be a finitely generated subring of . Then
R e .27, since ¥ = x for all xte R2R, so by 34 RR=A &PH---P A,
and the A; are finite fields. Choose a; € R’ such that [a;] = A;. Then
a; # 0 soa; eI, for some B;e A but I; N [a;] <][a;] so I;, N [a;] = (0).
Therefore A; = [a;] = [a;] + I,./I;, is isomorphic to a subring of Fj.
Since &7 is strongly hereditary R’ is isomorphic to a finite direct sum
of fields in & .

Conversely, if every finitely generated subring of R is isomorphic
to a finite direct sum of fields in &, R must be a .2#,-ring since again
2¥ = 2 for all xe R. Thus by 3.3 there are ideals I,: «e¢ A of R such
that N{l,:ae A} = (0) and R/I, is a field of prime characteristic;
moreover, R/I, must be a finite field since ¥ — « = 0e I, for all x e R.
Therefore, for each a € A, there exists x, ¢ R such that [x,] + I,/I, =
R/I,. But then R/I, is a homomorphic image of [x,] so R/I, is iso-
morphic to a field in & .

4. Semi-simple radical classes.

LEmMMA 4.1. If & is a class of rings such that subdirect sums
of rings im = are in & and & satisfies (A) then Z 1is strongly
hereditary.

Proof. Let Re'% and S be a subring of R.

Set R, = R for all 1 ¢ Z+ = the set of positive integers. Now the
(discrete) direct sum 3\ {R;:7e€ Z~*} is an ideal of the direct product
(complete direct sum) [[{R;: 1€ Z*}. If seSlet §(7) = s forallie Z-.
Then S — 4(S) = {8:s€ S} is an embedding of S into [] {R;:ie Z*}.
A4(S) + S {R;:1e Z*} is a subdirect sum of copies of R and hence is
in &, so

~ ~ AS) + D {Ri:1eZ}
S = 48S) = S (RiicZ) eE .

Using a theorem of Amitsur [1] which states that every ring is
a homomorphic image of a subdirect sum of total matrix rings of
finite order over the ring of all integers, Armendariz in [5] proves
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that if a hypernilpotent radical class & is a semi-simple class, then
% contains all rings. A hypernilpotent radical class is a hereditary
radical class which contains all nilpotent rings.

THEOREM 4.2. If «° is a semi-simple radical class and & & <77,
then < consists of all rings.

Proof. Let < be a semi-simple radical class. If « & .<# then
there is a Re%” and xe R such that [x] == [¢]>. In [8] Kurosh
shows that for any semi-simple class &, subdirect sums of rings
in & are in %. Thus, by 4.1, [x]e«  and since [x]*<][x],
[x]/[x)Pe . Now [x]/[x]* is a zero ring on a cyclic group and since
«” satisfies (F'), C= = the zero ring on the infinite cyclic group is in
% . This implies (see [3] and [6]) that ~ contains all nilpotent rings.
Since &~ is a semi-simple class (see [2] and [6]) «~ is hereditary, hence
%" is hypernilpotent. Therefore, by [5], ~ is the class of all rings.

THEOREM 4.3. If <« 1s not the class of all rings then the follow-
ing are equivalent:

1) <« is a semi-simple radical class,

(2) there is a strongly hereditary finite set = (F') of finite fields
such that: Re '« if and only if R is itsomorphic to a subdirect sum
of fields in & (F),

(3) there is a strongly hereditary finite set < (F') of finite fields
such that: Re & if and only if every finitely generated subring of
R s tsomorphic to a finite direct sum of fields in & (F).

Proof. By 3.7 we have that (2) and (3) are equivalent.

Assume that &~ satisfies condition (3). Clearly «~ satisfies (A)
and (E).

If B<]A and both A/B and B are in «  and A’ is a finitely
generated subring of A then A’ + B/B = A’/A’ N B is isomorphic to a
finite direct sum of fields in = (#). A slight modification of the proof
given for Proposition 1 on page 241 of Jacobson [7] shows that A’ N B
is finitely generated as a ring. Thus A’ N B is also isomorphic to a
finite direct sum of fields in «’(#) and so A’ = A’//A'NBH A N B.
Therefore Acz’. From this it is easy to show that if & (R) = the
sum of all ideals of R which are in % then <« (R)e= and
& (R/ (R)) = (0). Thus, =~ satisfies (B) and (C).

If every nonzero ideal of a ring R can be homomorphically mapped
onto a nonzero ring in «” then by 3.7, every nonzero ideal of R can
be homomorphically mapped onto a ring in = (F). Sulinski [9] (see
also [6], Theorem 46) shows that this implies that R is isomorphic to
a subdirect sum of rings in %”(F) and hence by 3.7 again, Re =°. So
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= satisfies (F) and hence &~ is a semi-simple radical class.

Conversely, suppose = satisfies condition (1). Let < (F') = the
class of all fields which are in & and define A = T[] {R: Re & (F)}.
Since =~ is a semi-simple class subdirect sums of rings in &  are in
%"; thus Ae%’. By hypothesis, & = .<Z, so by 3.4 all elements of A
must be torsion. From this it follows that there is a finite number
of primes p,, ---, py such that every field in & (F) is of characteristic
p; for some 1 <+ < N. For each finite field Re & (F) choose a(R)
such that [a(R)] = R and for each infinite field R e & (F') set a(R) = 0.
Then o = {@¢(R)}zc.» is in A and by 3.5 a* = a for some integer
K = 2. Thus, for all finite fields R in &’ (F'), the dimension of R over
its prime subfield is < K — 1. Hence there is only a finite number of
finite fields in < (F'). Suppose there is an infinite field R e & (F').
By 3.2 R is of prime characteristic and is algebraic over its prime sub-
fleld so R has an infinite number of non-isomorphic finite subfields. All
these subfields are in & (F') since = is strongly hereditary by 4.1.
This is impossible since there is only a finite number of finite fields in
& (F'). Therefore « (F) is a strongly hereditary finite set of finite
fields. If Re % then Re <% so by 3.3 R is isomorphic to a subdirect
sum of fields all of which are in &' (F) since % satisfies (A). Con-
versely, any ring isomorphic to a subdirect sum of rings in & (F) is
in & since % is semi-simple class. Thus & satisfies (2).
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