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Techniques of Eilenberg, Nakayama, and Nagao are used
to obtain results on the global dimension of the ring Rjl
where I is an eventually idempotent ideal. We also consider
the cases when I is contained in the socle of R, and when
/ has nonzero annihilator.

In [3] the global dimension of R/I is calculated for R left hereditary
and I eventually idempotent (i.e., In = In+1 for some n).1 These results
are generalized by the following theorem:

THEOREM 1. Let I be an ideal of R which is either projective
as a left R-module or flat as a right R-module. If Γn — Im+1 then
for any R/I-modιde M

l.hdjiu M <Ξ l.hdβ M + (m - 1) l.hdΛ / + 2m - 2 .

The proof depends on the following lemmas whose proofs we leave
to the reader:

LEMMA 1. Let 0 —> Mm -^•---^M1—+MQ—>M-+Q be an exact
sequence of S-modules such that \.hds Mj ^ n Vj. Then \Λιds M ^
n + m.

LEMMA 2. // the ideal I is left S-projective and P is a projective
left S-module, then IP is left S-projective.

LEMMA 3. // the ideal I is right S-flat and K is a submodule
of a free left S-module, then

l.hds IK ^ l.hd5 / + l.hd5 K .

REMARK. All of the above may be stated with l.hd replaced by
l.wd.

Proof of Theorem 1. (a) Assume I is left projective. Proceed
by induction on l.hd^ikf = n. n = 0 trivial, n = 1. Let 0—>P—>
F —>M— >0 be an iϋ-projective resolution. Consider the exact sequence
(of [3]):

1 R and S will always denote rings with unit elements; I will always denote a
two-sided ideal. "Projective" means left projective.

345



346 K. L. FIELDS

0 = lmF/Im+1F • Im~ιP/ImP • im

> >IP/FP >IF/ΓF >P/IP >F/IF >M >0 .

Now use Lemmas 1 and 2 to obtain l.hdΛ// M ^ 2m — 1 as required.
n > 1. Consider 0—>K-+F~»ilf—>0 Λ-exact where F is iZ-free.
Then l.hdΛ K = n — 1 ̂  1. Since IM = 0 we may consider the R/I
exact sequence

0 • K/IF > F/IF > M > 0 .

Then l.hd^ K/IF = n — 1 so by induction

l . h d Λ / / K/IF ^ n - l + 2m-2

and so \.hάRlί M ^ n + 2m — 2.
(b) Assume I is right flat. Let 0-+K-+F—>M-+0 be iϋ-exact,

where F is lϋ-free. Again, consider the ϋJ/I-exact sequence

0 > Im~ιKIImK > I^F/I^F > I^K/T—'K >

> IK/FK > IF/ΓF > K/IK > F/IF > M 0̂

and apply Lemmas 1 and 3, making use of the fact that if N is a
submodule of a free left J?-module then Vn ̂  0 Toif+n (R/I, N) = 0 and
so l.hdΛ// N/IN ^ l.hdΛ N.

REMARK. Conversely, if I is left protective and l.hdΛ//2 R/I =
m - 1, then I w = I m + 1 .

Proof. Consider the i2//2-sequence

> ///3 > R/P > R/I • 0 .

By hypothesis, I™-1/!™ is i2//2-projective, and so

splits, hence Im = Im+1.

THEOREM 2. (a) Let Iu , In be ideals such that IJ2 In — 0.
Then lgld R ^ max^ lgld R/I, + l.hd* R/I{

(b) Let I be any ideal contained in the left socle of R. Then
lgld R ^ lgld R/I + l.hdΛ R/I.

Proof, (a) Let M be any left JS-module. Consider the filtration
0 = IJ2 In M c 72 In M c c I%ikf c M. By Auslander's lemma
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l hd* M ^ max l.hdβ (Ii+ι
i

^ max l.hdΛ R/I{ + lgld R/h .

(b) lgld R = sup l.hd^ R/L where L runs through the left ideals
of R. Since every left ideal is a direct summand of an essential left
ideal (by Zorn), we may sup over only the essential left ideals. But
/ is contained in every essential left ideal, and so annihilates R/L.

COROLLARY 1. If R is a semi-primary ring of finite global di-
mension, then the global dimension of Rjl is finite for every projective
ideal I.

COROLLARY 2. If R has finite global dimension and I is a pro-
jective nilpotent ideal, then lgldi?//2 = n < °o, In+1 = 0, and lgldiϋ ίg
n + 1.

COROLLARY 3. Let R have finite global dimension and let I be a
projective ideal. Then lgld R/Ik < co vk if and only if I is eventually
idempotent. This characterizes those rings for which lgld R/I is finite
for every projective ideal I as being those rings of finite global di-
mension whose projective ideals are eventually idempotent.

We remark that if / is any ideal of a ring R such that lgld R/I = 0
and lgld R/P < °o Vfc, then I is eventually idempotent by results of
Chase [1].

COROLLARY 4. If R is semi-prime, then

lgld Λ/l.Soc R ^ lgld R ^ lgld Λ/l.Soc R + l

COROLLARY 5. Let T be an arbitrary triangular matrix ring

[1], i.e., T = (Q e ) where M is an (R, S)-bimodule. Then

max (lgld R, lgld S) * lgld T <L max ί 1 ^ S + 1M° M + 1 .
(lgld R

(To obtain the lower bound, we observe that I = (jz 4: ) is right

T-projective, I = Γ, and T/I ~ S; J = f ̂  $) is l e f t Γ -P r °i e c t i v e >

J = J2, and T/J ~ R. For the upper bound, observe that JI — ΰ and

apply Theorem 2 (a).J

A similar formula for rtgld and wgld may be obtained. In parti-
cular, when S is semi-simple,
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f 1 + l.hdΛ M ,Ί „ (1 + l.wdΛ Mlgld Γ = max * , wgld T = max Λ

(lgldi? [wglάR

and rtgld i2 ̂  rtgld T ^ rtgld JS + 1.

2. It is a well known result of Cartan and Eilenberg that the
right global dimension of a right noetherian local ring is equal to the
left weak dimension of its residue class field. Can "left weak" be replaced
by "right homological"? The answer is no by the following example,
which is based on a construction that has been recently used by P. M.
Cohn [2] and Jategaonkar [4].

(This example also shows that the right global dimension of a
right Noetherian ring may be greater than 1 + sup rt.hd L where L
runs over the maximal right ideals. This is of course in contrast to
the commutative case.)

Let R = F[[x]] where F is a field chosen large enough so that R
possesses an injective endomorphism a whose image is contained in F.
Let S = R[[xlf x2; σ]], i.e., the twisted right power series ring in two
commuting variables over R. We claim that S is the required example:

( i ) S is right noetherian.

Proof. T = Rife; σ]] is a right P.I.D. ([2] or [4]). Now use
the usual commutative proof of the Hubert Basis Theorem to prove
that T[x2; σ] is right noetherian.

(Note: It is crucial that if f e T, f = Σte ^to* then f'x* = 2̂̂ Γ̂
where u is a unit.)2

That S is right noetherian now follows as in the commutative case.
(ii) S is local and the maximal ideal of S is generated on the

right by x.
(iii) rt.gld S = 2.

Proof. It is clear that rt.hd^ (xfi + x2S) = 1. Now Sx2S is left
S-flat3 and S/Sx2S is a right P.I.D. hence by Small [5] we see that
rt.gld S ^ 2 and the proof is complete.

The author wishes to thank Professor L. W. Small for his invaluable
advice and encouragement.
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