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Let q = pz, where p is a prime and z ^ 1, and put r = qn,
n^l. Consider the polynomial

F{x) = x^+ί -h a?-1 -f 1 .

Mills and Zierler proved that, for q = 2, the degree of every
irreducible factor of Fix) over GF(2) divides either 2n or 3n.
We shall show that, for arbitrary q, the degree of every irre-
ducible factor of F(x) over GF(g) divides either 2n or 3n.

We shall follow the notation of Mills and Zierler [1]. Put

(1.1) K = GF(r) , L = GF(r2) , M = GF(r") .

The identity

(̂ (2,+Dr + χ(r-l)r + 1) _ X^X2^ + X^ + 1)

- (af2-1 - l)(αf2 + r + 1 - 1)

is easily verified. Since

(x2r+1 + xr~ι + l ) r = xi2r+1)r + x{r~ι)r + 1 ,

it is clear that

(1.2) Fr(x) - xr2-*F(x) = {x*-1 - l)(xr2+r+1 - 1) .

Let F{a) = 0, where a lies in some finite extension of GF(q). Then

by (1.2)

(a*2-1 - l)(ar2+r+1 - 1) ,

or*-1 - 1 - 0

so

(1.

or

(1

that

.3)

.4)

Clearly

either

(1.4) implies

a'*-1 - 1 = 0 .

Hence a lies in either L or ikf.
Assume α e ίΓ. Then α r = α, so that F(α) = 0 reduces to
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604 L. CARLITZ

(1.5) α3 + 2 = 0 .

There are now several possibilities. First the case p = 2 can be
ruled out since a Φ 0. Next if p = 3, (1.5) reduces to a? = 1, so that
a — 1. If p > 3 and r = 2 (mod 3) then again a is uniquely determined
by (1.5) and is in GF(p). If p > 3, p Ξ 2 (mod 3) but r Ξ 1 (mod 3),
then a e K if and only if

(1.6) (-2)(ϊ"-1)/a = 1 (modp) .

Since p2 — 11 r — 1, it is clear that this condition is satisfied; hence
there are three distinct values of aeK that satisfy (1.5). Finally if
p= 1 (mod 3), (1.5) will be satisfied with a e K if and only if (1.6) holds
and again there are three distinct values of a.

There is also a possibility that F(x) has multiple roots when p > 2.
Since

F'(x) = (2r + l)x2r + (r - l)xr~2 - x2r - xr~2 ,

it follows that a multiple root must satisfy

(1.7) ar+2 = 1 .

Then

0 = a3F(a) = α2 r + 4 + tfr+2 + a3 ,

so that α3 + 2 = 0. On the other hand, combining (1.7) with either
(1.3) or (1.4) gives a3 = 1. Hence p = 3, α = 1. Since F"(l) = 2 the
multiplicity is 2.

To sum up we state the following two theorems.

THEOREM 1. The degree of every irreducible factor of

F(x) = x2r+1 + xr~x + 1

over GF(q) divides either 2n or 3n.

THEOREM 2. The only possible irreducible factors of F(x) of
degree dividing n are determined as follows:

( i ) p - 3, x - 1,
(ii) p > 3, r = 2 (mod 3), linear factor,
(iii) p > 3, p = 2 (mod 3), r = 1 (mod 3), x* + 2,
(iv) p ΞΞ 1 (mod 3), (-2)('-1)>3 = 1 (modp), ^3 + 2,
( v ) p ΞΞ 1 (mod3), (-2) { ί-1 )/3 =£ 1 (modp), 1.
i^(x) fcαs multiple roots if and only if p = 3; w/̂ ew p = 3, a: = 1

is α rooί of multiplicity 2.
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Let F0(x) denote the product of the irreducible divisors of F(x)
over GF(q) of degree dividing n and put /0 = deg F0(x). Then Theorem
2 implies

THEOREM 3. We have

( i ) /o = 2,

(ϋ) Λ = l,
(iϋ) /. = 3,
(iv) /β = 3,
(v) / . = 0, _

where the cases (i), •••, (v) have the same meaning as in Theorem 2.
When p = 2,fo = O.

2* If a denotes a root of F(x), put

(2.1) β = a2r+1 .

Thus

β + ar~ι + 1 = 0,

so that

(2.2) {β + l)2r+ί + βr~ι = 0 .

Expanding the left member of (2.2) we get

βto+l + β2r + 2βr+l + ^βr + βr-1 + β + j = Q .

this is the same as

(2.3) 08' + /S'-1 + l)(^+ ι + β + 1) - 0 .

Now define

G(x) - (xr + xr"γ + l)(a;r+1 + a? + 1) .

It follows that if a is a root of F(x), then a2r+1 is a root of G(x).
As in [1], put

Gx(x) = xr + xr~ι + 1 , G2(x) = xr+1 + x + l ,

so that

G(x) = G^Gzix) .

Also it is convenient to put

H(x) = xr + x + 1 .

The roots of H(x) are the inverse of the roots of G^x).
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If H(β) = 0 then

βr = -β _ 1 f β* = _βr _ ± = β ^

so that β e L. If we assume β e K, so that βr = β, it follows that
2/3 + 1 = 0. Thus for p > 2, iϊ(#) has a unique root in if (indeed in
GF(p)). Since £Γ(/3) = 1 it is clear that H(x) has no multiple root.
Thus, except for the root —2, all the roots of G^x) lie in L and not
in K.

Next if G2(β) = 0we have

βr+1 = -β - 1 ,

so that

£r*+r+l = __β(β + 1) = -/9-+1 - /9 = 1 .

Hence β*"3-1 = 1, so that βeM. If we assume βeK we get

(2.4) £2 + 0 + 1 - 0 .

This equation is solvable in K if and only if p — 3 or r = 1 (mod 3).
Thus, except for these cases, the roots of G2(x) lie in M and not in
K. Since

Gί(x) - xr + 1 - (x + iγ ,

it follows that G2(a?) has no multiple roots.
This proves

LEMMA 1. Except for the root —2 when p > 2, αϊi £&e roo£s o/
G^x) lie in L and not in K. Except for the root 1 when p = 3, αϊϊ
ί/̂ e rooίs of G2(x) lie in M and not in K.

We shall now prove

LEMMA 2. Let a be a root of F(x) and put β = a2r+1, so that β
is a root of G(x). If β is a root of G^x), then aeL; if β is a root
of G2(x), then ar2+r+1 = 1 so that aeM.

Proof. By hypothesis

0 = F(a) = β + ar-1 + 1 ,

so that

(2.5) β = -or- 1 - 1 .

Assume first that Gx(β) = 0. Then
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so that

and a2 e L. But since either a e L or a e M it follows that aeL.
Next let G2(β) = 0. Then by (2.5)

a*-1 = -β - 1 = / 5 r + 1 = /9 ( r + 1 ) ( 2 r + 1 )

,

which gives

(2.6)

This implies a2eM. If α e L , (2.6) reduces to α2r+4 = 1; this in turn
gives

so that B = ± 1 . Since G2(/3) = 0 we must have p = 3, /3 = 1.

3* By Theorem 1 we have

(3.1) F(x) = F

where every root of Ft{x) is in L, every root of F2(x) is in ikf, every
root of F0(x) is in K.

We shall now prove

LEMMA 3. A number aeL is a root of Fx{x) if and only if
β = a2r+1 is a root of G,{x).

Proof. By Lemma 2, if a is a root of F^x), then β is a root of
G^x). Let aeL, β = α2r+1, G /̂3) = 0. Then since α*"2-1 = 1 it follows
that

( γ 1 = (a^+ψ-1 = a2{r2-1] = 1 .

Consequently

- F + β'-1 + (
- βr + /3"-1 + 1

- G^) = 0 ,

so that F(a) = 0.
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LEMMA 4. Let a be an element of M such that ar2+r+1 = 1. Then
a is a root of F2(x) if and only if β = a2r+1 is a root of G2(x).

Proof. By Lemma 2, if a is a root of F2(x), then β is a root of
G2(x). Let a e M, ar2+r+1 = 1, β = a2r+1, G2(β) = 0. Since

we get

0 = G2(β) = βr+1 + β + 1 - α 2 r + 1 + α^-1 + 1 = F(a) ,

so that F(a) = 0.

LEMMA 5. Let β be a nonzero element of L and let R(β) denote
the number of elements a in L such that a2r+1 ~ β. Then

ίl (r = 0, 2 (mod 3)

(3.2) R(β) = J3 (r = 1 (mod 3), β = j \ 7 e L)

[0 (otherwise) .

Proof. Any common divisor of 2r + 1 and r2 — 1 must divide

(2r - l)(2r + 1) - 4(r2 - 1) = 3 .

If r = 0, 2 (mod 3) then 2r + U l , 2 (mod 3), so that (2r + 1, r2 - 1) = 1.
It follows that the equation a2r+ι = β has a unique solution a e L. If
r = 1 (mod 3) we have (2r + 1, r2 — 1) = 3; thus the equation a2r+ί — β
is insolvable in L if and only if β = τ3, 7 € L. Ίί β = 73, 7 e L, there
are exactly three solutions; otherwise there are none.

If r = 0, 2 (mod 3) it follows at once from Lemmas 3 and 5 that
there is a one-to-one correspondence between the roots of Fx{x) and
of Gγ{x). We may therefore state the following.

THEOREM 4. Let r = 0, 2 (mod 3). T%ew ί/iβ degree of F^x) is
equal to r.

If we put/ , = degF^x),/* - degF 2(^),/ 0 = degF0(tτ), then by (3.1)
we have

(3.3) fo + 2r + l = f1+fi.

Thus for r = 0, 2 (mod 3), /2 can be computed by means of (3.3) and
Theorem 3.

4. We shall now determine f when r = 1 (mod 3). By Lemmas
3 and 5, f is three times the number of roots of Gt(x) that are cubes
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in L. Then, if as above

H(x) = xr + x + 1 ,

/i is three times the number of roots of H(x) that are cubes in L.
Put λ = βr+1, where H(β) = 0. Since βr2 = /9, it follows that

V = βr2+r — λ, so that XeK. In the next place λ is a cube in K if
and only if β is a cube in L. To see this let 7 denote a primitive
root of L. Then /9 = 7*, where t is some integer. If β is a cube in
L then £ = 3u, where u is an integer. Thus

X = /3r+1 = 73M(r+1) .

Since 7 r + 1 eiΓ, it follows that λ is a cube in K. To prove the con-
verse, it is clear first that λ — j ^ r + 1 \ where a is an integer. If λ is
a cube in K it follows that a — 3δ, where b is an integer. Thus
X = /9r+1 becomes

so that

36(r + 1) - ί(r + 1) (mod r2 - 1) .

This implies

36 = t (mod r - 1) .

Since r = 1 (mod 3) we conclude that 3/ί.

The relation λ — /δr+1, where H(β) = 0, is equivalent to

(4.1) β2 + /8 + λ = 0 .

We have seen above that, except for β = —1/2, all the roots of
iί(/3) = 0, are in L and not in K (of course this case occurs only when
p > 2). Moreover β = —1/2, λ = 1/4 do indeed satisfy (4.1). Also 2 is
a cube in L if and only if it is a cube in iΓ, that is, if and only if

(4.2) 2(r-1)/3 = 1 (mod p) .

Thus aside from the exceptional case just described we must
determine the number of cubes of K that are not of the form τ(τ + 1)
with τ in K (for convenience we replace λ in (4.1) by its negative).
We denote this number by N. If No denotes the number of nonzero
cubes of K that are of the form τ(τ + 1) with τ in K, it is clear that

(4.3) N+N0 = Ur-l).
o

As for flf we have
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(4.4) f, = 6N + SE ,

where E — 1 when (4.2) is satisfied and E = 0 otherwise. The coef-
ficient 6 occurs because for given λ^l/4 there are two distinct values
of β; however when λ — 1/4 there is a single value of β and hence
the coefficient 3.

It remains therefore to evaluate No. Clearly GN0 is equal to the
number of pairs x, y eK such that

(4.5) x2 + x = yz Φ 0 .

Assume first that p > 2. Then (4.5) is equivalent to

(4.6) 22 - 4τ/3 + 1 , yΦO.

Let ψ(a) denote the quadratic character for K, that is

( + 1 (a = b2φ0,beK)

ψ(a) = I 0 (α = 0)
— 1 (otherwise) .

Then the number of solutions of (4.6) is equal to

Σ {l + γ(4y3 + l)},
yeK

so that

(4.7) 6N0 = r - 2 + Σ Ψ W + 1) ,
yeK

where now the summation is over all yeK.

Put

J(μ) — Σ Ψ(M* + a) (a€ K)

Then clearly

J(acz) = ψ{c)J{a) (c Φ 0) ,

so that

<4.8) J2(αc3) - J\c) {cΦQ) .

a x,y a

= Σ.(r - 1) - ^Σ31

=rΣ1-Σ1
= r(3r - 2) - r2

= 2r(r - 1) ,
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so that

(4.9) Σ J2(a) = 2r(r - 1) .
a

Let 7 denote a fixed primitive root of K. Then by (4.8) and (4.9),
since J(0) = 0,

(4.10) J 2 (l) + J2(72) + J2(74) - βr .

On the other hand, since

Σ J(c2) = Σ Σ t (α 3 + c2) = r - l - Σ l = 0 ,
e x c x^O

it follows that

(4.11) J(l) + J(τ2) + J(74) - 0 .

Combining (4.11) with (4.10), we get

(4.12) J 2(l) + J(l)J(l2) + J2(72) - 3r .

It is easily seen that J(l) is an even integer while J(τ2), J(74) are odd.
Thus (4.12) implies

(4.13) r - A2 + 35 2 ,

where A, B are integers defined by

(4.14) A = λj(l) , B = 1[J(1) + 2J(72)] .

It follows from the definition that

(4.15) J(l) Ξ 1 (mod 3) .

Hence, by (4.11) and (4.12),

(4.16) J(l) = J(72) = J(74) = 1 (mod 3) .

If p = 2 (mod 3) it is clear from (4.13) that A= ± r 1 / 2 , B = 0.
Thus, by (4.11), (4.14) and (4.16),

(4.17) J(l) = ±2r 1 / 2 ΞΞ 1 (mod 3)

and

(4.18) J(72) - J(74) = -\j{\) •
Li

For p = 1 (mod 3), on the other hand, we have the congruence

Ξ - ( I S ) " (modί3)-
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where p = 6m + 1. Thus /(I) Φ 0 (modp) Hence A2, B2 in (4.13)
are uniquely determined. Then making use of (4.16), J(l), J(72), J(74) are
uniquely determined.

Returning to (4.7), we have

(4.19) 6N0 = r - 2 + ψ(2)J(2) .

Thus, by (4.3) and (4.4), we get

(4.20) Λ = r - ^(2)JΓ(2) - 3 ^ .

We may state

THEOREM 5. Let p > 2, r = 1 (mod 3). T&ew ίfce decree of Ft(x)
is determined by (4.20), where J(2) is uniquely determined by (4.13),
(4.16), (4.17) and (4.18); E = 1 when

2(r-1)/8 Ξ 1 (mod p)

and E — 0 otherwise.

5. When p — 2 we have, as above, /i = 6Ar and

N + No = hr - 1)
o

6N0 is equal to the number of pairs x, yeK such that

(5.1) x2 + a? = f Φ 0 .

Now for α G if put

ί(α) = a + a2 + a22 + . + a2"2"1

and

β(α) - (-ira) .

Define

(5.2)

It follows from (5.2) that

(5.3) L(αc3) - L(α) (c Φ 0) .

Since e(α) = e(a2) we have also

(5.4) L(a) = L(a2) - L{a~') (a Φ 0) .

It is easy to show that
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(r (α = 0)

(0 (α Φ 0) .

Then

a 6 K x,y a

= r[l + S(r - 1)]

= r(3r - 2) .

Since L(ά) = r, it follows that

(5.5) Σ L\a) = 2r(r - 1) .

Let 7 denote a fixed primitive root of K. Then, by (5.3) and (5.5),

U{1) + L\Ί) + L2(τ2) = 6r .

In view of (5.4) this reduces to

(5.6) L\l) + 2L\Ί) = Qr .

In the next place

Σ L(a) = Σ Σ e(α*3) = r ,
a x a

so that

ΣL(α) - 0 .

By (5.3) and (5.4) this reduces to

(5.7) L(l) + 2L(τ) - 0 .

Combining (5.7) with (5.6) we get

L2(7) - r , L(7) = ±r 1 / 2 .

But it is clear from the definition that

L(a) = 1 (mod 3)

for all aeK. Therefore

(5.8) L(Ύ) = L(72) = ( - 2 ) w / a

and, by (5.7),

(5.9)
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We now return to (5.1). For fixed y, the number of solutions of
(5.1) is equal to

It follows that

6N0 = Σ {1 + e(y*)}

= r - 2 + L(l) .

Then

fί = 6N= β[i-(r - 1) - iV0]

= 2(r - 1) - [r - 2 + L(l)]

- r -

In view of (5.9) this becomes

This completes the proof of

THEOREM 6. Let p = 2, g = 2% r = g\ T&ew ίΛe decree of F^
is equal to

2^z / 2γnz

The degree of F2(x) is determined by

/o + 2r + 1 = Λ + f2 ,

where f — deg î i(x) απώ /0 is given by Theorem 3.

We note that when 2 = 1, Theorem 6 reduces to Theorem 3 of [1].
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