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Let A be a continuous linear operator on a complex Hubert
space X with inner product <, > and associated norm 11 11.
Let W(A) — {{Ax, x) \ \ \ x \ | = 1} be the numerical range of A
and for each complex number z let Mz = {x \ {Ax, x} = z \ \ x | | 2}.
Let YMZ be the linear span of Mz and Mz 0 Mz = {x + y \ x e Mz

and y e Mz). An element z of W(A) is characterized in terms
of the set Mz as follows:

THEOREM 1. If z e W(A), then YMZ = MZ@MZ and
( i ) z is an extreme point of W(A) if and only if Mz is

linear;
(ii) if z is a nonextreme boundary point of W(A), then

YMZ is a closed linear subspace of X and YMZ = u {ikΓw | WGL},
where L is the line of support of W(A), passing through z.
In this case YMZ = X if and only if TΓ(A) c L.

(iii) if PΓ(A) is a convex body, then # is an interior point
of W(A) if and only if YMZ = X.

It is well-known that W(A) is a convex subset of the complex
plane. Thus if ze W(A), either z is an extreme point (not in the
interior of any line segment with endpoints in W(A)), a nonextreme
boundary point, or an interior point (with respect to the usual plane
topology) of W(A). Thus Theorem 1 characterizes every point of
W(A).

The following additional notation and terminology are used. If
K a X, then K1 denotes the orthogonal complement of K. An operator
A is normal if and only if AA* = A*A and hyponormal only if
AA* < A*A. A line L is a line of support for W(A) if and only
if W(A) lies in one of the closed half-planes determined by L and
LnW(A) Φ 0.

In the last section of the paper consideration is given to Π {maximal
linear subspaces of Mz). One result is that if A is hyponormal and
z a boundary point of W(A), then Π {maximal linear subspaces of Mz) =
{x\ Ax = zx and A*x = 2*cφ This generalizes Stampfli's result in [3]:
if A is hyponormal and z is an extreme point of W(A), then z is an
eigenvalue of A. In [2] MacCluer proved this theorem for A normal.

2* A proof of Theorem 1* Lemmas 1 and 2 provide the core
of the proof of Theorem 1.

LEMMA 1. Let z be in the interior of a line segment with end-
points a and b in W{A), x e Ma, y e Mb, \\ x || = || y \\ = 1. There exist
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real numbers s and t in (0, 1) and a complex number λ, | X | = 1, such
that tx + (1 — t)Xy e Mz and sx — (1 — s)Xy e Mz. Consequently,

MaczMzφMz.

Proof. In proof of the convexity of W(A) given in [1], pp. 317-
318, it is shown that tx + (1 — t)Xy e Mz for some real number t in
(0, 1) and some complex λ, | λ | = 1. A slight modification of the
argument shows that sx — (1 — s)Xy e Mz for some real number s in
(0, 1). Therefore, since Mz is homogeneous and s,te (0, 1), x e Mz 0 ikfz,
proving the last assertion.

LEMMA 2. Let L be a line of support of W(A) and N =
\J{Mw\weL}.

( i ) There exists a real number θ such that N = {x\ eίθ(A — z)x —

e-
i9(A* — z*)x} for all z in L.

(ii) N is a closed linear subspace of X.
(iii) N= X if and only if W(A) c L.

Proof, (i) Let θ be such that eiθ(w — z) is real for all w and z
in L. Then N — {x \ < eiθ(A — z)x, x > is real}. Therefore since L is
a line of support of W(A), Im eί0(A - z) > 0 or < 0 and thus N =
{x I ei0(A — z)x — e~iθ(A* — z*)x). Conclusion (ii) follows immediately
from (i), and (iii) follows from the definition of N.

Proof of Theorem 1. Let z e W(A). (i) In Lemma 2 of [3] it is
proven that Mz is linear if z is an extreme point of TF(A). If z is
not an extreme point of TF(A), z is in the interior of a line segment
with end points a and b in W(A). By Lemma 1, Ma c Mz © Mz. Since
a Φ z, Ma Π Mz — {0}. Therefore Mz cannot be linear, (ii) Assume
now that z is a nonextreme boundary point of W(A). Let L be the
line of support of W(A), passing through z, and let N = | J {Mw \weL}.
Lemma 1 implies that Mw czMzφ Mz whenever w e L; consequently,
NaMz®Mz. Lemma 2 (ii) implies that γMzaN. Therefore,
MZ@MZ= YMZ = N and thus by Lemma 2 (iii) γMz = X if and
only if W(A) c L. (iii) Assume now that W(A) is a convex body. If
£ is an interior point of W(A), Lemma 1 implies that Ma c Mz 0 Mz

for each a in "PΓ(A). Therefore

X= \J{Ma\aeW(A)}aMz®Mzd YMZ= X.

On the other hand if z is a boundary point of W(A) either Y Mz = Mz

or Y Mz = N and in either case YMZ Φ X since W(A) is a convex
body.

3* Π {Maximal linear subspaces o£ Mz). Although Mz may
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not be linear, it is homogeneous and closed. Therfore if Mz Φ {0} and
x e Mβ, there exists a nonzero maximal linear subspace of Mz, containing
x. Consideration of the intersection of these maximal linear subspaces
yields information about eigenvalues and eigenvectors of A.

THEOREM 2. Let z e W(A) and Kz = Π {maximal linear subspaces
of Mz}. If z is a boundary point of W(A), let N = \J {Mw | w e L},
where L is a line of support for W(A), passing through z.

( i ) If z is a boundary point of W(A), x e KZJ and Ax e N, then
Ax — zx and A*x = z*x. Conversely, if Ax = zx and A*x = z*x, then
xeKz.

(ii) If W(A) is a convex body and z is in the interior of W(A),
Kz = {x I Ax = zx and A*x = z*x}.

Proof. By elementary techniques it can be shown that for each
complex z

(1) K. = M,Γi[(A-z)(γM,)]±Γi[(A*-z*)(γMg)]>- and that if
z is extreme,

(2 ) Mz c [(A - z)N]λ Π [(A* - z*)N]λ.
(The proof of (2) depends upon the fact that Mz is linear if z is ex-
treme.) (i) Let z be a boundary point of TF(A). By Theorem 1, Kz =
Mz if z is extreme and γMz = N if z is nonextreme. Moreover, if
xeKz and AxeN, Lemma 2 implies that

(A - z)xeN and (A* - z*)x e N .

It now follows from (1) and (2) that Ax = zx and A*x = z*x. The
converse follows immediately from (1). (ii) If W(A) is a convex body
and z is in the interior of W(A), YMZ = X by Theorem 1 and (1) im-
plies that Kz = {x I Ax = ̂ a; and A*# = 2;*̂ }.

COROLLARY 1. If A is hyponormal and z is a boundary point of
W(A), Π{maximal linear subspaces of Mz} — {x\Ax — zx and A*x =
z*x}. In particular, if z is an extreme point of W{A), z is an
eigenvalue of A.

Proof. Again let N = (J {Mw \ w e L}y where L is a line of support
for W(A), passing through z. In Lemma 3 of [3] Stampfli proves
that A(N) c N. Thus by Theorem 2, (i) Kz = {x \ Ax = zx and A*x =
J2;* }̂. Moreover, if « is extreme, KZ — MZΦ {0}.

One last remark about potential eigenvalues and eigenvectors: it
is immediate from Lemma 2 (i) that if z is a boundary point of W(A),
Ax — zx if and only if A*x = z*x.
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