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ON THE CONVERGENCE OF A
TRIGONOMETRIC INTEGRAL

R. MouANTY AND B. K. RAY
In the present paper, we shall first establish a theorem
concerning the convergence of a trigonometric integral. Then

in the final section, we shall evaluate some known definite
integrals with the help of our theorem,

1. DEFINITION. We say that the integral Sma(u)du is summable
1]
(C,1) to sum S, if
Ao Jo

lim Sx<1 — %)a(u)du =S.

In [1], a result regarding the (C, 1) summability of a trigonometric
integral was proved which is equivalent to

THEOREM A. Let f(t) be L over (0, ). Then, for 0 < a <1,
the integral

S "dug f(¢) sin utdt

is summable (C, 1) to

f@) 4
ra+1) Cos 2 S

-0 tl-e-a'
whenever this integral exists and whenever

f(t) = 0(t%) as t—0.
In §2 of the present paper we establish the following theorem.

THEOREM. Let {%f(1)(0 < a < 1) be of bounded wvariation over
(0, ) and tend to zero both as t—0 and t— o. If the integral

S—mf(t) sin utdt is uniformly convergent with respect to u over 0 <
0
pLEu=SN< oo, for every p and \, then

1) | wdu| @O sinutdt = r@+ cos Lan( ™10 gy

g fita

whenever the last integral exists.

In the present problem f(f) is not necessarily L over (0, «). In
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§ 3 we shall evaluate some known definite integrals with the help of
the above theorem.

2. For the proof of the theorem, we use the following simple
lemma.

LEMMA.  If the function g(t) is positive and nonincreasing over
the interval (a, =), then

gﬁmg(t) cos tdt| = Ag(a)

Proof of the theorem. We write h(t) = ¢7f(t). For any ¢ > 0,
there is a 6 such that |A(t)| < ¢ for all ¢t < ¢ and for all ¢ > 1/6. For
the sake of simplicity, we shall drop the sign — at infinity in the

proof. We have
oo oo A
2.1) qu“dug f(¢) sin utdt = S f(t)dtg w® sin utdu
j 0 0 j

since the inversion of order of integration is justified by the uniform
convergence of the inner integral of the left side of (2.1). Using

integration by parts, we get

it
[44 COS U
S d

’
t:x{—l nt ul—a

2 a a
X u® sin utdu = —%— cos ut — NTcos A —
©

and then the equation (2.1) becomes

Szuadurf(t) sin utdt
=p S h(t) cos ptdt — go Mt) cos Mdt + ago ﬁiﬁdtgz%d”
=I-J+K.
Now
=)
§Aﬂagzm?fl:t;’ Sj_h%.féil_)cosvdv

< Ae* 4+ 0(1) as pu—0,

by applying the lemma for the last integral, after writing h(¢) as the
difference of two functions which tend to zero monotonically. Similarly

! Throughout the present paper we write A for an arbitrary constant which is
not necessarily the same at each occurrence.
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1/2 1/e2 )
o]
1/2 1ed

=< o(l)N‘S dt + A S | R(v/\) | dv + H:h—g’gﬁ cos vdv

[J] = A"

S A+ o(l) as A— oo .

Thus it is sufficient to prove that

(2.2) lim sup | % — ar Mdtrw dul < Aev |
yr g o w¢

200, -0

since
S u*! eos udu = I'(a) cos %an .
0

The term inside the absolute value sign of (2.2) is

% — aS“ ) dtg COSU gy agm h(t) dtyt COS U g0,
12 ye o pt Y

S h(t) dts cosu 4.
1yt uwe

ag‘” h(t) dtr cos % g
yr ¢ i Y
=a(L— M- N).

Now,

2= [0 g (" du

gAmS’%dtzoa) as A— .
0 o

By the formula

gt CoS U g sin gt i l—ag sm;wdv
0

,Ul—a #tl—a # 0 ,02-—01
we get
M= #,,,S“' h(t) dtSt cos v 4.
it o ¢
1 S‘” h(t) sin pt i + S‘” h(t) dtS‘sinm) dv
#l—a 12 tZ—-a 1—a 12 t 0 vZ—-a
=M, + M,

where
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g = Holsiny g,
' Wi o
= Se +“m = +ol) as px—0
£[2 e

and

M, = 114 S"“ mO) gt Sl“ sin pro
p iz 0 pEe
I A S"" sin pv dvg h) g4
#1~a 12 vz—a » t
:MU+Ar mm%mr.ﬂﬁw
A t

P ol

where the change of order of integration is easily proved, and then

| M,| < Ae* + o(1) .

Finally
IN| < A SS @) dt - Sl/& | A(t) | th cosv g
)\‘IN(X 12 tZ-—-a 2t ,vl~—a
iever A Sl/& e

< As+o(l) as AN— oo,

Thus we get the required inequality (2.2) and the theorem is completely
proved.

3. Evaluation of integrals. Let us consider the function

f@) =t/d +¢) (0, ).

Then the integral of the left side of (1.1) for the present function
reduces to

sin utdt

ru”du

0

k".

1+
T

= “e~"q ~—l’a 1
25 ” (@ +1).

Obviously, the function satisfies all the conditions of the theorem,
S0 we have
1

T ©
z 1) = I'(a + 1)cos L S dt
2P(a+ ) (a + )cos26v7z'01+t2

i.e.,
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3.1) S‘” P gt=— T for O<a<l.

1 L 2
o1+t 2cos7an

Next we consider the funection
fit) = /1 + t*) 0, =) .

Obviously, this function satisfies the hypotheses of the theorem of
the present paper. The integral on the left side of (1.1) for the present
function reduces to

o oo 3
S u"‘dus J sin wtdt
0 o1 4+ ¢*

= I [wet T eos du = Lo+ Deos(a+ DI

2 Jo V2
Now by the theorem of the present note, we have
T T 1 Rl A
TP+ eos(@+1)E =a+1 s—omg__
2 (+)CO(+)4 (a+)c02 T
Therefore

for 0<a<l.

_dt =
0141 2 COS%—QTC

S"" A gt — T o8 (¢ + Dr/4

Finally, we would like to express our indebtedness to the referee
who suggested some improvements both in the hypotheses and the
proof of the theorem as presented in the original manuscript. The
second author is thankful to the University Grants Commission, New
Delhi, for financial support.
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