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A smooth (Z°=) function on a smooth real submanifold M
of complex Euclidean space C* is a CR function if it satisfies
the Cauchy-Riemann equations tangential to M., It is shown
that each CR function admits an extension to an open neigh-
borhood of M in C* whase z-derivatives all vanish on M to a
prescribed high order, provided that the system of tangential
Cauchy-Riemann equations has minimal rank throughout M.
This result is applied to show that on a holomorphically convex
compact set in M each CR fuction can be uniformly approxi-
mated by holomorphic functions.

1. Extension and approximation of CR functions. FEach point
p of a smooth real submanifold M of C™ has a complex tangent space
H,M. 1t is the largest complex-linear subspace of the ordinary real
tangent space T,M; evidently H M = T,M N 1T, M. Its complex dimen-
sion is the complex rank of M at p. The theorem of linear algebra
relating the real dimensions of T,M, ¢T,M and their sum and inter-
section shows that if M has real codimension %k its complex rank is
not less than » — k.

DEFINITION 1.1. M is a CR manifold if its complex rank is con-
stant. It is genericif in addition this rank is minimal; that is, equal
to the larger of 0 and » — k. A smooth function f on M is a CR
function if ker d,f D H,M for each p in M.

Here f is assumed to be extended in a smooth manner to an open
neighborhood of M and d,f is regarded as the conjugate complex-linear
part of the ordinary Fréchet differential d,f. Since the condition on
0,f is independent of the extension chosen, the definition makes sense.
Computational equivalents to it and some elaboration are given in § 2.
A more comprehensive treatment of these ideas is found in the paper
by S. Greenfield [1]. It should be mentioned that his definition [1,
Definition II. A.1] of CR manifolds also requires that the distribution
»— H,M be involutive. That assumption is not needed here.

If M is a complex submanifold of C”, then it is CR with complex
rank equal to its complex dimension. It is not generic if it has posi-
tive codimension. Of course the CR functions on M are just its holo-
morphic functions.

At the other extreme, every real hypersurface is a generic CR
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manifold of complex rank » — 1. These frequently have no nontrivial
complex submanifolds, which is true for example of the usual 2n — 1
sphere in C".

M is a generic CR manifold if its complex rank is everywhere
zero, which is the totally real [5] case.

An example of a proper generic CR submanifold which is neither
totally real nor a hypersurface can of course only be found if % = 3.
There is one in C°, a 4-sphere S* given as the intersection of the usual
5-sphere and a real hyperplane transverse to it. Let

o=z + |2+ |21

and o, = 2, + Z;, where z, z,, 2, are the usual coordinates for C°, and
let S*= {0, =p, =0}. It follows from (2.2) below that S* has the
requisite properties. Furthermore, S* has no nontrivial complex sub-
manifolds (since the 5-sphere does not).

THEOREM 1.2. If f is a CR function on a generic CR manifold
M in C* and m 1s a nmonnegative integer, then there is an ertension
of f to a smooth function f, on an open set U DM such that of,
vanishes on M to order m in all directions.

This result is known [3, Lemma 4.3] and [5, Lemma 3.1] when
M is totally real. It is also proved in [2, Th. 2.3.2'] when M is a
real hypersurface. A local version which does not require that M be
generic is proved in [5, Lemma 3.3].

Theorem 1.2 plays a key role in a program outlined by L. Hormander
for showing that CR functions can be uniformly approximated by
holomorphic functions. The basic idea is to take a compact set K in
M and a given CR function f on M and find a solution ¢ of og = af
with supg |g| small. Then 4 = f — g is holomorphic and approximates
f uniformly on K with error no larger than sup,|g|.

In Hormander’s implementation of this idea, Theorem 1.2 implies
that a certain bound on an L* norm of the Sobolev type is imposed
on dg. The existence of solutions to 6g = df subject to the same a
priori bound [2] and a Sobolev inequality are used to estimate supx|g]|-
This proof appears in [3] and [5] for the cases cited above. Since the
only step of it which depends on the complex rank of M is the con-
clusion of Theorem 1.2, this proof will, without further modification,
yield a result on uniform approximation.

THEOREM 1.3. If M s a closed generic CR submanifold of a
domain of holomorphy U in C" and K 1s a compact subset of M
holomorphically convex with respect to U, then each smooth CR func-
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tion on M is a uniform limit on K of functions holomorphic on U.

In fact, the same method in conjunction with Theorem 1.2 will
prove the stronger statement that approximation holds in the &=
topology; c.f. [5, Th. 6.1]. One merely replaces supx|g| by a &*
norm of g on K.

In the totally real case, it is known that the holomorphic con-
vexity of any given compact subset K with respect to some domain
of holomorphy is a consequence of the absence of complex tangent
vectors. This follows from the fact [3, Th. 3.1] and [5, Corollary 4.2]
that each K has arbitrarily small tubular neighborhoods which are
domains of holomorphy. However, the case of the 2n — 1 sphere in
C" shows that in the presence of complex tangent vectors holomorphic
convexity must be assumed. When there is complex tangency, the
problem of determining holomorphic convexity of a given compact sub-
set of M is very difficult, even for the examples mentioned above.

It should be remarked that in Definition 1.1 and Theorem 1.2 C*
may be replaced by any complex manifold, and if this manifold is
Stein [2], it may replace U in Theorem 1.3. No significant modifica-
tion of the exposition is required.

2. CR manifolds and functions. Each real-linear map L: C" —
C” is uniquely expressible as a sum L = S + T where S, T: C*—C*, S
is complex linear, and T is conjugate complex linear. If J:v—1v, a
direct computation shows that S = }(L — JLJ) and T = (L + JLJ).
Applying this result to the Fréchet differential d,0 of a smooth map
©: C"— C* at p there results

do0 = 0,0 + 0,0

in which 8,0 is the complex linear part of d,0 and 9,0 the conjugate
complex linear part.

Each point of M has an open neighborhood U in C* on which there
exists a smooth map p = (0, -+, 0,): U— R* with maximal rank % on
U and satisfying

2.1) MNU=1{&ecU:p() =0}.

Regarding R* as contained in C* in the usual way, and applying the
remarks above to Definition 1.1, it follows that M is CR if and only
if 0o has constant complex rank on M N U, and is generic exactly when
this rank is maximal. When %k = n this means that H,M = 0, which
is the totally real case. The case of interest here is k£ < n, when M
is generic if and only if do has complex rank k& on M N U. Henceforth,
it is assumed that ¥ < n. Since it is clear that op = (90, ---, 00;) it
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follows that the condition
(2.2) 90, N\ -+ AN 3o,  has no zeros on M N U

is necessary and sufficient that M be a generic CR manifold.
From Definition 1.1 and (2.2) it follows that a smooth function f
on M is CR if and only if

(2°3) gf/\g(ol/\"‘ Aglok:O on M.

Equivalently, since {dp,, ---, 00,} is, at points of M, by virtue of (2.2)
part of a basis for the space of conjugate-linear functionals on C*,
there exist smooth functions #,, ---, h, on U such that

(2.4) o = 3,130, + 0(0) .

Here O(p) denotes a form which vanishes on M N U. It is a standard
result [4, Lemma 2.1] that if ¢ is a smcoth O(p)-form there exist
smooth forms g, ---, g, such that

13
(2.5) gzgmw-

More generally, O(0™) will denote a smooth form on U which vanishes
on M N U to order m. Induction on m using (2.5) shows that if ¢ is
such a form there are smooth forms g, on U satisfying

(2.6) g= 2 0.,

lai=m
in which the standard multi-index notation has been used. Thus
a = (a, +--, @) is a k-tuple of nonnegative integers, |a| =a, + - -+ + «,,
and 0% = pf-..03t. The coefficients g, are not unique on U, but the
fact that they are determined on M N U will be essential.

LEMMA 2.1. If smooth forms g, g. are related on U by
g= 3 0%, + 0"

then for each o, D*¢ | M N U =«alg,| M N U. In particular, if g =0
on U then each g,|M N U = 0.

Here D* = Df---D3k, where D, denotes differentiation with re-
spect to o; and a! = ;! --- !,

Proof. The statement is local and since o has rank k%, the proof
can be reduced to the case where each ©; = z;, the jth ordinary
Euclidean coordinate function. Then the lemma follows from the gen-
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eral Leibniz formula

s

D“(fg) — Zj, <f¥/) Drf. Dw—;,g

with f = 2% noting that D'x* =0 on M N U if v <« and D*z* = al.
Here <3> = al/yl(@ — v)! and v < « means that v; < a; for some j.

3. Proof of Theorem 1.2. The proof is an induction on m in
which f,., is obtained by subtraction of an O(po™*') function from f,.
Similar procedures have been used in [2, Th. 2.8.2'], [3, Lemma 4.3],
and |5, Lemmas 3.1 and 3.3]. The one used here borrows ideas from
all of these. Since the totally real generic cases where k = n are
treated in [3] and [5], it will be assumed that ¥ < n. However, the
proof below can be read with k = %, with some slight modifications.

In the presence of complex tangent vectors, the only known result
is local in nature [5, Lemma 3.3]. Its proof refers to a particular
local coordinate system for C" and uses an initial extension f, which
is independent of the coordinates normal to M. This feature is clearly
not preserved by the patching construction intended here, so an arbi-
trary extension of f must be admitted at each step. This introduces
remainder terms of the form O(0™), and it is necessary to keep an
accurate account of their effects.

To begin the induction, extend a given CR function f from M to
a smooth function f;, on an open set U > M.

First assume that the representation (2.1) holds on U. Then df,
is of the form (2.4) and if w = >\i_, p,h; it is clear that 3(f, — u) = O(p).

In general U has a locally finite cover by open sets U, on each
of which there exists a defining function o, presenting M N U, as in
(2.1) and a O(p,) function u, satisfying a(f, — u.) = O(p,) on U,. If
{p.} is a partition of unity subordinate to {U.} and

(3.1) U= DL, P,
then
(3°2) 5(fo - u) = ZL @cg(fo - /L(/L) - zu uté@n .

By construction each term of either sum in (3.2) vanishes on M. There-
fore so does af, if f. = f, — u.

For the inductive step assume that m > 0 and f has an extension
f to U such that df, vanishes on M to order m. A global modifi-
cation of f, will again be obtained by patching local ones, so the
construction is again begun by assuming that M is globally presented
by (2.1).
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Then by (2.6) there are smooth (0,1) forms g, such that

(3'3) f ;mlo ga .
Hence
_ 3 -
(3.4 0=0fu= 5 > a,0700; \ g+ O(07) ,

in which @ — j denotes («a,, N a; —1, .-« , ) if a; > 0. Wedge this
equation with 6o, A -+ A 5p; A -+ A 30, (3p; is missing) to show
that for each j

(8.5) 0= 3 @090, A\ -+ N30y N\ go + O(0™) .

laj=m

Now for fixed 7, the map @ — « — 7 is a one-to-one correspondence
of {a:|a| =m and «; >0} with {8:|8] = m — 1}. Therefore (3.5)
may be rewritten as

0= lﬁlg‘b—l(ﬁj + 1)0700, A +++ A 30y A gsr; + O(0™)
and Lemma 2.1 applied to deduce that g,.; A 90, A -++ A 90, =0 on
M. Since this holds for every j and 8, it follows from the linear

independence of dp,, «--, 90, on M that for each «, || = m, and each
j»1 <4 <k, there is a function h,; such that

k —
(3.6) G = Z he;00; + O(0) -

When substituted for ¢, in (3.3) and (3.4) this relation yields

3.7) Ofm = azm ; 0%h,;00; + O(p™*)
and
(3.8) 0= 3 3 a,0=h.d0; A 30; + 00" .

laj=m i,j=1

The expression (3.7) suggests modifying f,. by

0%0hy;
+ 1 xalzm :Z 7

U =

(the need for the constant 1/(n + 1) will appear as a consequence of
(3.11)). Now

— _ k R —
B9 (n+ Dou =2, 04,005 + 3 X 0,060 hej00; + >, 0°000a; -
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The first term of this is df,. The second is

(3.10)

%3

k o \s
2 Pj( Y aip“%haj>api )
=1 laj=m
which will be shown to equal ndf,, + O(o™*).

To that end, for each 7 < 7, wedging (3.8) with

_ N\ AN _
00, A\ =+« NOO; A\ =++ N0O; A\ =+ N 00
(00; and op, are missing) gives the symmetry relation

(3.11) 0= 2 (a;0"he: — @0 hay) + O(0™) -

lai=m

Using this in (3.10) it becomes

i (Oj< >, aﬂoa_jhai)éloi + O(p™*)

1,j=1 lal=m

which when the summation over ;7 is performed first is

k k
= S(Ze)orhdon 00 .
Noting that >}i_, @; = n completes the argument that the second term
of (3.9) is maf,, + O(0o™*"). Therefore ou = df,, + O(0™").

Thus on each U, there is a function u, = O(o"*') such that
o fr—u)| U, =0(0"). With % defined again by (3.1) and fo., = fn — %
it follows as before from (3.2) that of,., vanishes on M to order m + 1.
This completes the proof.

4. Remarks. We know of no nongeneric examples where Theorem
1.2 fails. However, when M is not generic, the above proof breaks
down at the inductive step from m = 1 to m = 2: Since do does not
have maximal rank it may be assumed that there is an integer [ < k
such that do, A --- A 90, has no zeros on M but 3o, A -+ A dp; = 0
on M if 7 > 1. Thus there are more unknowns g, than equations avail-
able from (3.4). There are very simple cases where this occurs:

ExaMPLE 4.1. If the usual coordinates of C® are denoted z,, z.
and M = {z:2, = 0} then the function f = zZz, is CR, for of = 2.dz..
The most general function « vanishing to second order on M is by
(the complex analogue of (2.5)) of the form

U = 230, + 2:R.0, + 2305
for suitable smooth functions g, g,, and g,. Therefore

ou = 22591 + 29,42, + 22525.92 + 22,9,dz; + Zga‘g3 .
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Each of these terms either vanishes to second order on M or is line-
arly independent of df. Therefore no such # will satisfy o(f — u) =

0(0%).

However since f is zero on M, it obviously satisfies the conclusion
of Theorem 1.2. In fact, if M is a complex manifold, each CR func-
tion f is holomorphic, so if U is a domain of holomorphy Theorem 1.2
for U and M N U follows from Cartan’s Theorem B [2], which implies
that f has a holomorphic extension to U. Moreover, standard results
in several complex variables show that Theorem 1.3 is true for any
complex manifold M. Thus Theorem 1.2 and a consequent Theorem 1.3
may still hold in the nongeneric case, but some new ideas for proof
are necessary.
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