Pacific Journal of Mathematics

EXISTENCE OF TRICONNECTED GRAPHS WITH PRESCRIBED DEGREES

SIDDANI BHASKARA RAO AND AYYAGARI RAMACHANDRA RAO

Vol. 33, No. 1

March 1970

EXISTENCE OF TRICONNECTED GRAPHS WITH PRESCRIBED DEGREES

S. B. RAO AND A. RAMACHANDRA RAO

Necessary and sufficient conditions for the existence of a p-connected (linear undirected) graph with prescribed degrees d_1, d_2, \dots, d_n are known for p = 1, 2. In this paper we solve this problem for p = 3.

Let d_1, d_2, \dots, d_n be positive integers and let $d_1 \leq d_2 \leq \dots \leq d_n$.

LEMMA. If a triconnected graph G exists with degrees d_1, d_2, \dots, d_n , then

(1) $d_i \geq 3$.

(2) d_1, d_2, \dots, d_n is graphical, i.e., there exists a graph with these degrees.

(3) $d_n + d_{n-1} \leq m - n + 4$ where $2m = \sum_{i=1}^n d_i$.

(4) If $d_n + d_{n-1} = m - n + 4$, then $m \ge 2n - 2$.

Proof. (1) and (2) are evident. To prove (3), let x_n, x_{n-1} be the vertices of G with degrees d_n and d_{n-1} respectively. Then the number of edges in $G - \{x_n, x_{n-1}\}$ is $m - (d_n + d_{n-1} - 1)$ or $m - (d_n + d_{n-1})$ according as x_n, x_{n-1} are adjacent or not adjacent in G. Also $G - \{x_n, x_{n-1}\}$ is connected, so (3) follows. If now $d_n + d_{n-1} = m - n + 4$, then

 $2m \ge d_n + d_{n-1} + 3(n-2) = m + 2n - 2$.

This completes the proof of the lemma.

THEOREM. Conditions (1) to (4) of the lemma are necessary and sufficient for the existence of a triconnected graph with degrees d_1, d_2, \dots, d_n .

Proof. Necessity was proved in the lemma.

To prove sufficiency, first let conditions (1), (3) be satisfied and let $d_n + d_{n-1} = m - n + 4 = n + \lambda$ where $2 \leq \lambda \leq n - 2$. Let k be the number of d_i such that $1 \leq i \leq n - 2$ and $d_i = 3$. Then define

$$e_i = d_i - 2 \, ext{ for } \, i = k+1, \, \cdots, \, n-2$$
 .

Then we have

$$\sum\limits_{i=1}^{n-2} d_i = 2m-d_n-d_{n-1} = 3n+\lambda-8$$
 , $\sum\limits_{i=k+1}^{n-2} e_i = 3n+\lambda-8-3k-2(n-2-k) = n+\lambda-k-4$.

Define now $\eta = n - 2 - \lambda$ and $\varepsilon = k - \eta$. Then $\eta \ge 0$, and $\varepsilon \ge 2$ since

$$2m \ge m - n + 4 + 3k + 4(n - 2 - k) \\= m + 3n - k - 4$$

and so

$$\lambda = m - 2n + 4 \ge n - k$$
.

Write now

$$e_i = egin{cases} 1 & ext{for} \; i = 1, \, 2, \, \cdots, \, arepsilon \; \; , \ 2 & ext{for} \; i = arepsilon + 1, \, \cdots, \, k \; , \ d_i - 2 \; ext{for} \; i = k + 1, \, \cdots, \, n - 2 \; . \end{cases}$$

Then $\sum_{i=1}^{n-2} e_i = 2(n-3)$ and so there exists a tree T with degrees $e_1, \dots e_{n-2}$, attained by the vertices x_1, \dots, x_{n-2} , say, in that order [2]. Take two more vertices x_{n-1} and x_n and join them. Also join each of x_{n-1}, x_n to x_i for $i = 1, \dots, \varepsilon, k+1, \dots, n-2$. Of the η vertices $x_{\varepsilon+1}, \dots, x_k$, join $d_{n-1} - 1 - \varepsilon - n + 2 + k$ to x_{n-1} and the rest $(d_n - 1 - \varepsilon - n + 2 + k \text{ in number})$ to x_n . Note that

$$d_{n-1} - 1 - arepsilon - n + 2 + k = d_{n-1} - \lambda - 1 \geqq 0$$
 .

The graph we thus obtain has degrees d_1, \dots, d_n and is triconnected since any vertex of T with degree in T less than 3 is joined to either x_{n-1} or x_n .

Next let conditions (1), (2) be satisfied and let

$$d_n+d_{n-1}\leq m-n+3$$
 .

Then $d_n < m - n + 2$, so there exists a biconnected graph G with degrees d_1, d_2, \dots, d_n [2]. If G is not triconnected, let x_i, x_j be two vertices such that $G - \{x_i, x_j\}$ is disconnected. Let C_1, C_2, \dots be the components of $G - \{x_i, x_j\}$. By (1), $|C_g| \ge 2$ for $g = 1, 2, \dots$. Also by hypothesis,

$$m-d_i-d_j \ge n-3$$
,

so it follows that one of the components, say C_1 , contains a cycle.

We first prove that there exists an edge (x, y) in C_1 and two chains μ_1, μ'_1 of G connecting x and y such that $(x, y), \mu_1, \mu'_1$ are disjoint except for x and y, and μ_1 is contained in C_1 . Since G is biconnected, there exists a chain connecting x_i and x_j with all intermediate vertices in C_2 .

If now two vertices x, y with degree two in C_1 are adjacent and belong to a cycle of C_1 , the required edge is (x, y). So we may take that no two vertices of degree two in C_1 can belong to a block (on more than two vertices) and be adjacent. Let *B* be any block of C_1 which is not an edge. If some cycle of *B* has a chord (x, y), then (x, y) is the required edge. Otherwise, by the results of [1], two vertices y, z of degree two in *B* will be adjacent to a vertex x of degree three in *B*. If w is another vertex of *B* adjacent to x, then there is a chain connecting w to y in $B - \{x\}$. This chain together with (x, w) may be taken as μ_1 . To get μ'_1 , go from x to z along (x, z), from z to x_i or x_j (through another block of C_1 at z if necessary), then to y. Thus (x, y) is the required edge.

Let now (x, y) be an edge of C_1 chosen as explained above. If C_2 is a tree, take any edge (u, v) of C_2 . Then (u, v) is a chord of a cycle of G. If C_2 is not a tree, choose an edge (u, v) of C_2 such that there are chains μ_2 , μ'_2 of G connecting u and v, (u, v), μ_2 , μ'_2 are disjoint except for u, v, and μ_2 is contained in C_2 .

We define $f_{d}(s, t)$ to be the number of components of $G - \{s, t\}$. Now we will make a modification on G so that the degrees of the vertices are unaltered, $f(x_i, x_j)$ decreases and f(s, t) does not increase for any two vertices s and t.

First we associate with x, a subset A(x) of $\{x_i, x_j\}$ by the following rule. $x_i \in A(x)$ if and only if there is a chain ν connecting x to x_i with all intermediate vertices in C_1 such that ν is disjoint with (x, y) and μ_1 except for x. Similarly A(y) is defined. If C_2 is a tree, put $A(u) = A(v) = \{x_i, x_j\}$. Otherwise A(u), A(v) are defined in a manner similar to that of A(x) and A(y). Now A(x), A(y) are made nonempty by a proper choice of μ_1 , and A(u), A(v) are made nonempty by a proper choice of μ_2 (in case C_2 is not a tree).

Now suppress the edges (x, y), (u, v) and join x to one of u, v and y to the other as follows. Join x to u if $A(x) \neq A(u)$ and $A(y) \neq A(v)$ whenever such a choice is possible. Let the new graph thus obtained be H. To be specific we take that x is joined to u in H.

First we show that H is biconnected. Obviously $G_1 = G - (x, y)$ is biconnected. Now we show that (u, v) is a chord of a cycle of G_1 . If C_2 is a tree, then the cycle is

$$(u, x) + \mu_1[x, y] + (y, v) + [v, \dots, p_1] + (p_1, x_i) + (x_i, p_2) + [p_2, \dots, u]$$

where p_1 , p_2 are suitable pendant vertices of C_2 . Otherwise the cycle is

$$\mu_{\scriptscriptstyle 2}[u, v] + \mu_{\scriptscriptstyle 2}'[v, u]$$

where if μ'_2 contains the edge (x, y), then (x, y) is replaced by $\mu_1[x, y]$ and the resulting cycle is made elementary.

Trivially now $f_G(x_i, x_j) = f_H(x_i, x_j) + 1$. Next we will show that

(5)
$$f_G(s, t) \ge f_H(s, t)$$

for any two vertices s and t. For this it is enough to show that x, y are connected and u, v are connected in $H - \{s, t\}$.

First let $s = x_i$. Now x, y, u, v belong to a cycle in $H - \{x_i\}$, so (5) follows. So we may take $\{s, t\} \cap \{x_i, x_j\} = \emptyset$.

Now let s = x. Then to prove (5) it is enough to show that u, vare connected in $H - \{x, t\}$ when $t \neq u$ and $t \neq v$. This is evident if C_2 is a tree or $t \notin \mu_2$. So let $t \in \mu_2$ and C_2 be not a tree. If $A(u) \cap A(v) \neq \emptyset$, there is a chain connecting u, v in $H - \{x, t\}$. So we take without loss of generality $A(u) = x_j$ and $A(v) = x_i$. If now $x_j \in A(y)$, then u, v are connected through x_j and y in $H - \{x, t\}$. So we take $A(y) = x_i$. If $x_j \in A(x)$, then y would not have been joined to v, so $A(x) = x_i$. Now in G, x_j is connected to some vertex z of μ_1 by a chain with all intermediate vertices belonging to C_1 but not to μ_1 . Now we obtain a chain connecting u, v in $H - \{x, t\}$ by going from u to x_j, x_j to z, z to y along μ_1, y to x_i , and x_i to v. Thus we may take $\{s, t\} \cap \{x_i, x_j, x, y\} = \emptyset$.

Next let s = u. If $t \notin \mu_1$, then (5) is trivial, so let $t \in \mu_1$. Suppose first that C_2 is a tree. Then we obtain a chain connecting x, y in $H - \{u, t\}$ by going from x to x_i or x_j , then to v through a suitable pendant vertex of C_2 and then to y. If C_2 is not a tree, the situation is similar to that of the preceding paragraph. Thus we take $\{s, t\} \cap \{x_i, x_j, x, y, u, v\} = \emptyset$.

If none of s, t belongs to μ_1 , then (5) is trivial. So let $s \in \mu_1$.

Suppose now that C_2 is a tree. Then for any fixed vertex t, there are chains in $H - \{s, t\}$ from one of u, v to both x_i and x_j , and a chain from the other (of the vertices u, v) to x_i or x_j . Hence u, v are connected and (5) follows.

Suppose next that C_2 is not a tree. Obviously we may take $s \in \mu_1$ and $t \in \mu_2$. If now $A(x) \cap A(y) \neq \emptyset$ or $A(u) \cap A(v) \neq \emptyset$, then again (5) follows. So we may take $A(x) = x_i$, $A(y) = x_j$, $A(u) = x_j$, $A(v) = x_i$. Now we obtain a chain connecting x, y in $H - \{s, t\}$ by going from x to u, u to x_j, x_j to y. This proves (5) completely.

Now by a repeated application of the above procedure we reduce the graph until finally f(s, t) = 1 for any two vertices. The final graph has degrees d_1, d_2, \dots, d_n and is triconnected and this completes the proof of the theorem.

Perhaps necessary and sufficient conditions, similar to the conditions (1) to (4) above, for the existence of a *p*-connected graph with prescribed degrees d_1, d_2, \dots, d_n can be obtained for all $p \ge 3$, but the authors have not yet succeeded in this.

References

M. D. Plummer, On minimal blocks, Trans. Amer. Math. Soc. 134 (1968), 85-94.
A. Ramachandra Rao, Some extremal problems and characterizations in the theory of graphs, a thesis submitted to the Indian Statistical Institute, Calcutta, 1969.

Received August 13, 1969.

INDIAN STATISTICAL INSTITUTE, CALCUTTA

PACIFIC JOURNAL OF MATHEMATICS

EDITORS

H. SAMELSON Stanford University Stanford, California 94305

University of Washington

Seattle, Washington 98105

J. DUGUNDJI Department of Mathematics University of Southern California Los Angeles, California 90007

RICHARD ARENS University of California Los Angeles, California 90024

ASSOCIATE EDITORS

E. F. BECKENBACH

RICHARD PIERCE

B. H. NEUMANN F. WOLF

K. Yoshida

SUPPORTING INSTITUTIONS

UNIVERSITY OF BRITISH COLUMBIA STANFORD UNIVERSITY CALIFORNIA INSTITUTE OF TECHNOLOGY UNIVERSITY OF TOKYO UNIVERSITY OF CALIFORNIA UNIVERSITY OF UTAH MONTANA STATE UNIVERSITY WASHINGTON STATE UNIVERSITY UNIVERSITY OF NEVADA UNIVERSITY OF WASHINGTON NEW MEXICO STATE UNIVERSITY * * OREGON STATE UNIVERSITY AMERICAN MATHEMATICAL SOCIETY UNIVERSITY OF OREGON CHEVRON RESEARCH CORPORATION TRW SYSTEMS **OSAKA UNIVERSITY** UNIVERSITY OF SOUTHERN CALIFORNIA NAVAL WEAPONS CENTER

Printed in Japan by International Academic Printing Co., Ltd., Tokyo, Japan

Pacific Journal of Mathematics Vol. 33, No. 1 March, 1970

Mir Maswood Ali, On some extremal simplexes	1
Silvio Aurora, On normed rings with monotone multiplication	15
Silvio Aurora, Normed fields which extend normed rings of integers	21
John Kelly Beem, Indefinite Minkowski spaces	29
T. F. Bridgland, <i>Trajectory integrals of set valued functions</i>	43
Robert Jav Buck. A generalized Hausdorff dimension for functions and	
sets	69
Vlastimil B. Dlab. A characterization of perfect rings	79
Edward Richard Fadell. <i>Some examples in fixed point theory</i>	89
Michael Benton Freeman <i>Tangential Cauchy-Riemann equations and</i>	07
uniform approximation	101
Barry J. Gardner. <i>Torsion classes and pure subgroups</i>	109
Vinod B Goval <i>Bounds for the solution of a certain class of nonlinear</i>	- • • •
partial differential equations	117
Fu Cheng Hsiang, On C. 1 summability factors of Fourier series at a given	
point	139
Lawrence Stanislaus Husch, Jr., <i>Homotopy groups of PL-embedding</i>	
<i>spaces</i>	149
Daniel Ralph Lewis. Integration with respect to vector measures	157
Marion-Josephine Lim. $\mathcal{L} = 2$ subspaces of Grassmann product spaces	167
Stephen I. Pierce. Orthogonal groups of positive definite multilinear	107
functionals	183
W. J. Pugh and S. M. Shah. <i>On the growth of entire functions of bounded</i>	
index	191
Siddani Bhaskara Rao and Avyagari Ramachandra Rao. Existence of	
triconnected graphs with prescribed degrees	203
Ralph Tyrrell Rockafellar. On the maximal monotonicity of subdifferential	
mappings	209
R. Shantaram, <i>Convergence of a sequence of transformations of distribution</i>	
functions. II	217
Julianne Souchek, <i>Rings of analytic functions</i>	233
Ted Joe Suffridge, The principle of subordination applied to functions of	
several variables	241
Wei-lung Ting, On secondary characteristic classes in cobordism	
theory	249
Pak-Ken Wong, Continuous complementors on B*-algebras	255
Miyuki Yamada, On a regular semigroup in which the idenpotents form a	
band	261