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In this paper we consider univalent maps of domains in
Cvn = 2). Let P be a polydisk in C*», We find necessary and
sufficient conditions that a function f: P-— C” be univalent and
map the polydisk P onto a starlike or a convex domain, We
also consider maps from

D,={z|z]|, <1}cCn

(1) n 1/»
|z|p=|<z1,z2,---,zn>1p=[z|zjlp] , p=1
=1

into C* and give necessary and sufficient conditions that such
a map have starlike or convex image,

In [4] Matsuno has considered a similar problem for the hyper-
sphere D, C*. His definition of starlikeness is different from that
used in this paper, but the results show that the two definitions are
equivalent. However, his definition of convex-like is not equivalent to
geometrically convex.

1. Preliminary lemmas. For (2,2, ---,2,) = 2eC", define | z| =
max, ., 2;|. Let E, ={zeC"|z| <7} and E = E,. Let & be the
class of mappings w: E— C™ which are holomorphic and which satisfy
w(0) = 0, Re[w;(z)/2;] = 0 when |2| = |2;| >0, (1 £ 7 < n) where w =
(w,, w,, --+, w,). The following lemmas are generalizations of Theorems
A and B of Robertson [5, p. 315-317].

LEMMA 1. Let v(z;t): E X I— C™ be holomorphic for each tel =
[0,1], v(2;0) = 2, v(0,t) = 0 and |v(z;t)| <1 when zc K. If

(2) liril [(z — v(z; £)/t] = w(z)
exists and s holomorphic in E for some p > 0, then we 2.

Proof. The hypothesis (2) implies that lim, .+ v;(z; t) = 2, (here
V(25 1) = (0,25 8), v:(%; 1), + -+, V(25 1)) SO

22i(2; — v,(2; 1)) _
2; + v;(z; 1)

¥;(2; t)

is holomorphic for zecE,z; +0 (1 =j=<n). By Schwarz lemma,
|v(z;t) | =< |2| and hence Re [y ;(z; t)/2;] = 0 when | 2| = [z;| > 0. Setting
Y(2; t) = (Yry, Yoy ==+, Vn), (R € E, 2,2,---2, = 0) We observe that
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242 T. J. SUFFRIDGE
lim (2; t)/t° = w(z)
t—ot
for these values of z and using continuity of w we conclude we 7.

LEMMA 2. Let f: E—C" be holomorphic and univalent and
satisfy f(0) = 0. Let F(z;t): E X I—C™ be a holomorphic function
of z for each tel=[0,1], F(z;0) = f(z), F(0,t) =0 and suppose
F(z;t) < f for each teI (i.e., F(E;t) C f(E) for each teI). Let p >0
be such that lim,_ .+ F(z;0) — F(z; t)/t* = F(z) exists and is holomorphic.
Then F(z) = Jw where we &°. Here F and w are written as column
vectors and J is the complex Jacobian matrix for the mapping f.

Proof. Since F(z;t) < f for each tec I, there exists v: E X - K
such that f(v(z; t)) = F(z; t) where |v(z; t)| < |2|. Writing f as a column
vector we have f(v(z; 1) = f(z) + J(v(z; t) — 2) + R(v(?; t), 2) where
IR, 2)]/|] —2]|—0as | —2z|—0. Hence

F(z0) = F(zt) _ J<z — (% t)) _ Rz 1), 2)
e te te

and the lemma follows from Lemma 1.
2. Starlike and convex mappings of the polydisk.

DEFINITION. A holomorphic mapping f: E — C" is starlike if f is
univalent, £(0) = 0 and (1 — ¢)f < f for all tel.

THEOREM 1. Suppose f: E— C" is starlike and that J s the
complex Jacobian matrixz of f. There exists we P such that f = Jw
where f and w are written as column wvectors.

Proof. Apply Lemma 2 with F(z;t) = (1 — t)f(2). Then
f(z) = lim fz) — (1 — 9 f(z) — lim F(z;,0) — F(z; )
t—0+ t

t—0t t

and the theorem follows from Lemma 2.

We now consider the conclusion of Theorem 1 in component form.
Let J; be the matrix obtained by replacing the jth column in J by
the column vector f,1 <47 <n. Then the jth component w; of w is
det (J;)/det J. Theorem 1 therefore says that if f is starlike then
Re [det (J,)/z;det J] = 0 when |z| = [z;] > 0. Also,

(3) fr=Yig 4 s, oo 4 sy, 12jzn
0%, 0z, 0z,
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and equating coefficients in the power series using (3) we find
w;(2) = z; + terms of total degree 2 or greater .

Now suppose |2 | = |2 | > 0 and let a;,, (1 < k < n) be such that z{” =
a,z?. Then |a,| =<1,(1 =<k <n). Consider w;(z)/z; = u(z;) where z
is restricted to the set,

z:(alyaﬂ"',an)zja ,z],<1-

Then Reu(z;) = 0,0 < |2;|] <1 and u(z;)—1 as z;—0. Since Reu(z;)
is a harmonic function of z;, we conclude Re u(z;) > 0, |2;| < 1 and

(4) Re [w;(z)/2;] > 0 when |z|=|z;]>0.
‘We now prove the converse of Theorem 1.

THEOREM 2. Suppose f:E—C" is holomorphic, f(0) =0,J 1is
nonsingular and that

(5) f(z) = Jw, we F .
Then f 1is starlike.

Proof. Since det J+0 when z = 0, f is univalent in a neighbor-
hood of 0. Itis clear that {»:0 <7 <1 and f is univalent in E,} = A
is a closed subset of [0,1]. We will show that A is also open and that
if f is univalent in E, then f(H,) is starlike with respect to 0.

Let » > 0 be such that f is univalent in E,, (0 < r <1). Let 2
be fixed, |z| < r and let w(z;t) be such that f(v(z;t) = (1 — t)f(2),
—e < t<t, where ¢ is small and positive and ¢,>0. This is possible
since det J == 0.

Then

(25 1) = v(2; 0) + J 7+ (=f(2)) -t + g(t)
(6) =z—JJw-t + g(t)
v(z;t) = 2 — tw + g(t)

by (5). Here |g(t)|/t—0 as t— 0. Using (4), we conclude |v(z;t)|
is a strictly decreasing function of ¢. Hence each point of the ray
1 —-19f(),0<t=1 is the image of a point v(z;t) € E, for each z such
that |z] = »r. We conclude that f(E,) is starlike with respect to 0.
We now show A is open. Observe that f is one-to-one in the closed
polydisk E, for if |z| < |{| = r, 2% { and f(2) = f(£) then by (6) and
(4) we can conclude that for ¢ positive and sufficiently small there are
functions v({; ©), v(z; t) such that v((; ), v(z, t) e E,, v({; t) == v(2; t) and
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f0)) =0 - tf@) =1 — Df Q) = f(v, £)) which is a contradic-
tion.

We now define a continuous nonnegative function ¢: £ X E— R
(R is the real numbers) such that #(z, {) = 0 if and only if f(z) = f({),
2+ ¢. We show that ¢ is positive on the closed set E, x E, and hence
has a positive minimum on this set. This will imply f is univalent
in E,.,. for some ¢ >0 and hence A is open. For z, {ecE, define
G(z, {) = det (a;;) where

fi(zu Zgy ° "zijj-H' ) Cw) _fi(zlv Rgy ’vzj—u C.jy ct C’n)’ (Z =+ Cj)'
2 — G ’

(zly Rgy %y Ry, Cj—Hy M) Cn) ’ (zj = C])

o,
0%;
and f: (flyfz: "'yfn)'

Now set g(z, &) = |G(z, §) | + 3wt [ £:(2) — £O)]. Then ¢(z, 2) =
|det (J(2)| > 0 while

$(2, ) > 0 when f(2) = f(O) .

If f(z) = f({) for some z, {cE,z+ { then the columns of G(z, {) are
not linearly independent so G(z,{) = 0 and ¢(z, ) = 0. The proof is
now complete.

THEOREM 3. Suppose f: E— C" 1s holomorphic, f(0) = 0 and that
J is nonsingular for all ze E. Then f is a univalent map of E onto
a convexr domain if and only 1if there exist univalent mappings
fi A <75 n) from the unit disk in the plane onto convexr domains
m the plane such that f(z) = T(fi(z), fiz)+++, [u(2,) where T is a
nonsingular linear transformation.

Proof. It is clear that if f satisfies the conditions given in the
theorem, then f is univalent and f(E) is convex. We will prove the
converse.

Suppose f is a univalent map of E onto a convex domain. Let
A= (4,4, ---, A,) where 4,20 (1 <7 =< n) and let

At<z) - (Zlemlty zzeiAQt) Tty zneiAnt)
where —1 < ¢ <1. Then
F(z; 1) = 1/2[f(A,(2) + f(A_ ()] <f 0=t=1

and F'(z;t) satisfies the hypotheses of Lemma 2 with p = 2. Using
the same notation as in Lemma 2, we have
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F(z):(FnFZy"' F)
27, = 3 4if2 ‘;j + 2.2)

{(7) 6zk
n k—

+ 2 Z Z, A Az2-2

k= azlazk

and also F' = Jw, we &”. Hence we find that w; = det J’/det J where
JY is obtained from J by replacing the jth column by F' written as
a column vector. Fixk,1 <k <mn and choose A, =1,A4,=0,1 + Fk,
1<!l=<mn. Suppose [z2]=[2;]>0,7#k and z, = 0. Then w;/z; =0
and since Re (w;/z;) = 0 when |z| = |2;| > 0 we must have w; = 0. We
have therefore shown that for 1 <57 <m and 1 <k < n we have

2
(8) a2t 1 52 = Uy,
2 0%, 0%y,
where Re [v,(2)/2,] = 0 when [z| = |2,| > 0. With k as before, fixl,
1<1<m,l+#kand choose 4, =1, 4, =¢>0and 4, =0,1 < m < n,
m #* k, l.
Using (8) we conclude

w; = sflsz; +0E)  (G#k
where G; is obtained from detJ by replacing the jth column by the
column 0%, /02,02,(1 < m < n). Hence Re [z,2/2;-G;/det J] = 0 when
|z] = |%;] > 0. Since Re[z,2,/2;-G;/det J] = 0 when z,2, =0 we see
that G; = 0 for each j,1 < j < n.
Since the system of equations

i&f""j O 1<m=<sn
im0z 02,02, ==
has solution
\ G; .
%7 Jet T =J=n
we conclude
ﬁﬂ_ = l1sm=<n
07,02, -
This implies
"(9) fm(z) - Z;a/j,msprj,m(zj) 1 é m g n
=

where ¢,, is analytic on the unit disk in the complex plane. Using
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(8) we conclude ¢;,,, = ¢, (1 < m, k < n) provided the constants a;,.
in (9) are appropriately chosen. The theorem now follows readily

from (8).

ExampLE 1. Let f: E— C*? be given by f(2) = (2, + az}, z,) where
a is a complex number, a == 0. Clearly f is univalent. Letting f = Jw,
we find w, = 2, — az}, w, = 2, so f is starlike provided |a| < 1. Note
that Theorem 3 implies the suprising result that none of the sets f(E,)
is convex (1 > » > 0).

ExAMPLE 2. Let f: E— C* be given by f(z) = (2,0(?), 2.9(7)), g: . —
C where ¢ is holomorphic, 0 ¢ g(E). Then f = Jw implies

2 2zl

07, 0%,

(10) w2 = wilz =1 + [z

and f is starlike if and only if Re (w,(?)/z) = 0, z€ E. Conversely, one
can show that if f: E— C? is holomorphic, f = Jw where we.Z? and
w,[2, = W,/?, then there exists g: E— C, g holomorphic, 0¢ g(E) such
that (10) holds and f = ((a;2, + a,2,)g, (b2, + b2,)9), (a.b, # a.b). In
these cases the intersection of the polydisk E with an analytic plane
az, + Bz, = 0 maps into an analytic plane df, + vf, = 0. Interesting
choices of g are g(z) = (1 — 22,)™" and ¢g(z) = [1 — z)(1 — z,)]".

3. Extension to convex and starlike maps of D,. Since the
details of the proofs for the results in this section are similar to those
in §s 2 and 3, we omit the details. We wish to find lemmas which
apply to D, (D, is defined in equation (1)) in the same way that
Lemmas 1 and 2 apply to the polydisk. The crucial point is that given
equation (6) with 0 == ze D, we wish to conclude

|v(z; )|, = 2], when 0<t<e

for some ¢ > 0. This will be true provided 37, |z, — tw; |? < 31, |2, |*
for t sufficiently small. That is

312, (1 — 2t Rew,fz; + £ |w,fz; ) + 367 [w, ] < 3|2, |7
Z]J;:() Zj:(' j=1
or
(3 —pRe |z Re (w)/z) + X [w,]) < 0
J=1 z]-:0
2570

when ¢ is sufficiently small, ¢ > 0. Hence we define &7, for p > 1 by
we P, if w:D,cC*—C", w(0) = 0, w holomorphic and
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Reﬁ"Wj’|Zjlp/Zj 2 0 if p > 1
1) ~

25#0

zery w = (wu Wy * o, wn)'

We now have the following lemmas and theorems which correspond
to the lemmas and theorems of §§ 2 and 3.

LEMMA 8. Let v(z;%t): D, x I— C™ be holomorphic for each tel,
Wz, 0) =2, v0,t) =0 and |v(z; )|, <1 when zeD,. If

lim [(z — v(z; )/1'] = ()
exists and ts holomorphic in D, for some o > 0, then we F,.

LEmMMA 4. Let f: D,— C"™ be holomorphic and wunivalent and
satisfy f(0) = 0. Let F(z;t): D, x I—C™ be a holomorphic function
of z for each tel, F(z,0) = f(z), F(0;t) = 0 and suppose F(z;t) <t
for each tel. Let p>0 be such that lim, +(F(z; 0) — F(z; t))/t* = F(2)
exists and is holomorphic. Then F(z) = Jw where we F,.

THEOREM 4. If f: D,— C" is starlike then there exists we 7,
such that f = Jw. Conversely, if f: D,— C", f(0) = 0, J is nonsingular
and f=Jw, we P, then f is starlike.

THEOREM 5. Let f:D,—C™ f(0) =0 and suppose J is mnon-
singular. Then f(D,) is convex if and only if F' = Jw where we &,
for each choice of A= (A, A4, ---,A,),A4;Z0(1=7<n) and F is
given by (7T) with z¢€ D,.

Now set p = 2. It is easy to see that Theorem 4 above is equiva-
lent to Matsuno’s Theorem 1 [4, p. 91]. Consider f:D,-— C* given
by f(2) = (2, + azi, #). Theorem 5 shows that f(D,) is convex if and
only if | a| < 1/2 while Matsuno’s Lemma 3 [4, p. 94] implies f is convex-

like if and only if |a| < 313 /4. This shows that convex-like is not
equivalent to geometrically convex.
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