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This paper introduces into cobordism theory a mew notion
borrowed from ordinary cohomelogy theory. Specifically, let
& be a U(n)-bundle over the CW-complex X, Let E and E,
be the total spaces of the associated bundles whose fibers
are respectively the unit disc £?* c C* and the unit sphere
Sze~1 = C», The classifying map for £ gives rise to an element
U:e Q7' (E,E,). One defines the Thom isomorphism ¢; 25(X)—
Q5 (B, E,) by ¢(x) = (p*x)Us and Euler class, e(£) of &, by e(£) =
p*15%(Ug). For each a = (ay, as, +++), let cfa(€)cQ¥*(X) be
the Conner-Floyd Chern class of £, and S.: 24(X,Y)—
Q4*“(X, Y) be the operation defined by Novikov. Then one
has the relation, S.(e(¢)) = cf.(&)-e(6). Neow if £ is a bundle
such that ¢(¢) = 0, then one can define a secondary character-
istic class

To(§) € 20(X) mod (S, — cfo(£)25(X)
by using the above relation, The object of this paper is to

study some of the properties of such secondary characteristic
classes.

Secondary characteristic classes adapt particularly to the study of
embedding and immersion problems. Massey and Peterson and Stein
developed secondary characteristic classes in ordinary cohomology
theory [4][7][8], and Lazarov has studied secondary characteristic
classes in K-theory [3]. We hope the secondary characteristic classes
given here, and the operations on cobordism, defined by Novikov, will
have some applications on embedding and immersion problems.

The organization of the papers is as follows. In §1 we collect
some results on cobordism theory and give the definition of secondary
characteristic classes of cobordism theory. In §2 we give an example
and carry out some computations of these characteristic classes.

1. Definition of secondary characteristic classes. Let & be a
U(n)-bundle over the CW-complex X. Let E and E, be the total
spaces of the associated bundles whose fibres are respectively the unit
dise E** — C* and the unit sphere S*»~*c C". Then the Thom complex
is the quotient space E/E,. In particular, if we take & to be the
universal U(n)-bundle over BU(n), then the resulting Thom complex
M(&) is written MU(n). The sequence of spaces :
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MU©0), MUQ), « -+, MU(n), +--)

is a spectrum. Associated with this spectrum we have a cohomology
functor, the groups of this cohomology functor are written 2,(X, Y)
and called complex cobordism groups. We know that 23(.) is a mul-
tiplicative cohomology theory and 2,(P), where P is a point, is a
polynomial ring Z[xz, 2, ---, x;, ---] where z, e 27*(P).

Next for each U(n)-bundle & over X the classifying map for &
induces a map

v: M(&) — MU(n) .

The map 7 represents an element U, € 2¥*(E, E,). We define the Thom
isomorphism

P Qp(X) — Qy"(E, E)

by o(®) = (p*2)U,.
Now we need the following known theorems:

THEOREM 1 (Conmner-Floyd) [1]. To each & over X and each
& = (Q, Uy -++) we can assign classes cf,(£) e 24N(X), called the
Conner-Floyd classes, with the following properties:

(i) ef®d =1;

(ii) ofu(9*8) = g*cful);

(iii) Whitney sum formula cf (5@ N) = Disrr=a (cf6E)cfi1);

(iv) Let & be a UQ)-bundle over X, classified by a map X —

BU(), and let the composite X—J:-» BUQ1) — MU(Q) represent the
element we Py(X). Then cf(§) = w.

THEOREM 2 (Novikov) [1]. For each a = (a,, &,, «++) there exists
an operation

Sat 24X, Y) — 017X, Y)

with the following properties:
(i) So=1
(ii) S.f* = f*Ss;
(iii) S, is stable: S,0 = 6S,;
(iv) Cartan formula

Su(xy) = , = [(S)(S;9);
(vi) If weMap (X, MUQ1)) C Q%(X) then S, ,(w) = w', and
S.(w) =0 if a + (k) ;

(vil) Suppose that & is an U(n)-bundle over X then we have
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cfu(8) = 7' Sup(1);

where @ is the Thom tsomorphism for QF%.

DEFINITION 3. The Euler class of a U(n)-bundle & over X, de-
noted e(¢), is p*%*(U,), where j*: QL(E, E,) — Q24(FK) is induced
by the inclusion j: ¥ — (E, E,), and the isomorphism p*: 2i(X) —
QL(F) is induced by the projection p: E— X.

The following propositions are not difficult to prove:
PRroOPOSITION 4. If & is a trivial, then e(§) = 0.

PROPOSITION 5. For the Euler class, the relation

e(E D) = e(Se(n)
holds.

ProposiTION 6. If a U(n)-dbundle has an monzero cross section,
then e(&) = 0.

From Theorem 2 we have ¢f,(&) = ¢'S,p(1) so that
S U = pefu(8) = p*(cfu(9)) U, .

Therefore we have S.e(&) = c¢f.(£)e(8).
Now let £ be a bundle such that e(é§) = 0, then the long exact
sequence for (H, E,) breaks up into short exaect sequences.

0 — Q4(X) — Qi(E)) —— 0i'(B, E) — 0. Let a, e Q2—(E,)
such that d(a;) = U.. Then every element in 2} (E,) can be written
uniquely as za, + vy where x ¢ 25 *(X) and y ¢ 2,(X). In particular,
write S,(a) = xa, + y. Then we apply ¢ and find that x = ¢f(8). If
a' is another element with (a') = U,, then S ,(a') = ¢f.(&)a’ + y'. Then
Yy — ye(S, = cf(8)2%(X). Thus we can define a natural trans-
formation ¥,, from U(n)-bundle whose e(&)-class vanishes, to a natural
quotient of Q}. If & is a such bundle 2,&) takes values in Q}(X)
mod (S, — ¢f.(5)R2%X) and is the coset of y.

The following property can be easily proved:

PROPOSITION 7. If & has a nonzero cross section then 3. (&) = 0.

2. Example. Consider U(n + 1) as a principal U(n)-bundle over
S#+t for m > 1. Let & be the associated complex vector bundle. Then
the sphere bundle is the complex Stiefel manifold U(n + 1)/U(n — 1).
Since 2:(S*+') = 0, then Y, (&) is defined.
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Let ¢, be the Thom space of S?**! with respect to &, we have
the short exact sequence

0 — Q=S — Qy(U(n + 1)/U(n — 1)) Q7 (t,) 0.

Since H*(U(n + 1)/U(n — 1)) = A[Ysn_s, YV2ns1] be the exterior algebra
generated by v,,_, and v,,,, of dimensions 2n — 1, 2n -+ 1 respectively.
Therefore by [2] we have Q:(U(n + 1)/U®n — 1) A[Ysn_s, Yonii] Q QE(P).
Let %€ 25(Un + 1)/Um — 1)), Yoy € 25(Un + 1)/U(n — 1)) such
that (.(Fonot) = Yonoiy £e(T2ns1) = Yous, Where g0 Q5 — H*( , Z) is the
map defined by the Thom class (see [2] for definition), the group
QU + 1)/Un — 1)) is Z + Z with generators 7,,_, and 7,,.,[CP']
where [CP'] e Q7%(P) is a generator of Q%(P). The group Q%' (S**+)
is infinite cyclic with generator ¥,,.,[CP'], and so 0(%,,_,) = +U.. We
know that S,¥,,—. = ¢fTeney + b7Vsns, Where +b7,,,, represents X ,(%).
Since 2i(U(n + 1)/U(n — 1)) injects into Q% (U(n + 1)), we can compute
it in 2#(U(n + 1)). Now by using the notation of [9, p. 40] we have
the monomorphism

2 Q5 (UM + 1) — 25(Quss X Uln)) .

By induction, we can determine S, if we know S, in Q,,, and its
behavior under cross products. By [9] we have Q,., = SCP"VS' and
since S, commutes with the suspension map

s: QL,(CP"y — Qi7/(SCP™) ,

so we need only know S, in Q5(CP"). By [2, p. 52] we know that
Q:(CP™) is a free Q}(P)-module with basis 1, w,, -+, (w,)* where
w, € Map [CP", MU(1)] c 2%(CP™). Moreover, the inclusion

i CP*~'c CP"

has +*w, = w,_,. By Theorem 2 we have S, ,(w,) = j(w,)’*, hence
Swsw,) = sSy(w,)’ = sj(w,)’™ = js(w,)’, here s(w,)’, s(w,)’*" in
Q%(SCP™) are the images of (w,), (w,)"" under the suspension map s
respectively. From above data and an argument, similar to [9, p. 53],
we obtain S,¥s,_, = (® — 1)¥.,.,, hence ¢f,, =0 and b =n — 1. Now
we compute (S, — ¢f) Q2~4(S*™+) = S,,2%~(S**'), which is generated
by S(1)(72n+1[CP1])- By [5] we have Sy(Fon+:[CP']) = 2%:,+,. Therefore
Y€)= 0if n — 10 mod (2).
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