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CONTINUOUS COMPLEMENTORS ON J5*-ALGEBRAS
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This paper is concerned with continuous and uniformly con-
tinuous complementors on a i?*-algebra. Let A be a i?*-algebra
with a complementor p and Ep the set of all p-projections of
A. We show that if A has no minimal left ideals of dimen-
sion less than three, then p is uniformly continuous if and only
if Ep is a closed and bounded subset of A. We also give a
characterization of the boundedness of Ev.

Let A be a complex Banach algebra and let Lr be the set of all
closed right ideals of A. Following [4], we shall say that A is a right
complemented Banach algebra if there exists a mapping p: R-+Rp of
Lr into itself having the following properties:

(Cl)

<C2)

<C3)

<C4)

-Rn
R +

if R, c R2,

R" =
Λ» =

:ψ =
then

(0)

A

Rξa

(Re
(Re

(Re

R? (R,

Lr);

Lr);

Lr);

i, Rz 6 L r)

The mapping p is called a right complementor on A. In this paper
a complemented Banach algebra will always mean a right complemented
Banach algebra. We also use p(R) for Rp.

For any set S in a Banach algebra Ay let St and Sr denote the
left and right annihilators of S in A, respectively. Then A is called
an annihilator algebra if, for every closed left ideal / and for every
closed right ideal R, we have Ir = (0) if and only if I = A and Rι =
(0) if and only if R = A. If Irl = I and Rlr = R, then A is called a
dual algebra.

We say that a Banach algebra A has an approximate identity if
there exists a net {ea} in A such that | |βα | | ^ 1, for all a, and limα eax =
limα xea = x, for all xe A. Every i?*-algebra has an approximate
identity.

A minimal idempotent / in a complemented Banach algebra A is
called a p-projection if (fA)p = (1 — f)A. If A is a semi-simple an-
nihilator complemented Banach algebra, then every nonzero right ideal,
no matter whether closed or not (see [4; p. 653]), contains a p-projec-
tion. Let A be a complemented 5*-algebra with a complementor p.
Since, by [4; p. 655, Lemma 5], the socle of A is dense in A, A is
dual (see [3; p. 222, Th. 2.1]). Let E (resp. Ep) be the set of all
self-adjoint minimal idempotents (resp. p-projections) in A. Then, for
each e e E, there exists a unique P(e) e Ep such that P(e)A = eA. It
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can be shown that P is a one-to-one mapping of E onto Ep. We call
P the p-derived mapping of p. The complementor p is said to be con-
tinuous if P is continuous in the relative topologies of E and Ep induced
by the given norm on A (see [1; p. 463, Definition 3.7]).

Let A be a dual i?*-algebra. It has been shown in [1; p. 463,
Th. 3.6] that the mapping p: R—+ (Rι)* is a complementor on A(ReLr).
In this case Ev = E, P is the identity map, and therefore p is uniformly
continuous.

The concept "p is continuous" can be defined for any semi-simple
annihilator complemented Banach *-algebra in which xx* = 0 implies
x = 0. In fact, let A be such an algebra and p a given complementor
on A. By [2; p. 155, Th. 1], every maximal closed right ideal of A
is modular. Therefore [1, p. 462, Corollary 3.4] holds for A. Hence
the mapping P exists as in the case of J3*-algebra and so the concept
of continuity of p can be defined.

In this paper, all algebras and spaces under consideration are over
the complex field C.

2. Lemmas. In this section, unless otherwise stated, H will
denote a complex Hubert space and A = LC{H), the set of all com-
pact operators on H. There exist many complementors on A. If H
is infinite dimensional, then all complementors on A are continuous
([1; p. 471, Th. 6.8]). However if dimiϊ is finite, this is not true in
general as is shown in [1; p. 475]. If dimiί ^ 3, then every continu-
ous complementor on A is uniformly continuous (see [1; p. 471, Corol-
lary 6.6]).

If u and v are elements of ί f ,M0D will denote the operator on
H defined by the relation (u ® v)(h) = (h, v)u, for all heH.

LEMMA 1. Let A be any C*-subalgebra of bounded operators on H
and Ed A the set of all self-adjoint minimal idempotents. The E
is a closed subset of L(H), all bounded operators on H.

Proof. Let {en} c £ be a sequence converging to some ee A.
Clearly e2 = e and e* = e. In order that e e E, it suffices to show that
e(H) is one dimensional. Since (u 0 #)* — v £ξ) u and since each en is
a self-ad joint minimal idempotent, we can write en = unζ>§un, where
uneH and || un \\ = 1 (n = 1, 2, •)• Let v, w e H be such that e(v) Φ 0,
e(w) Φ 0. Since {(v, un)} is bounded, there exists a subsequence {v, uk)}
of {(v, un)} and a nonzero constant aeC such that (v, uk) —>a. Since

\\auk - e{v)\\ ^ \a - ( v , u k ) \ \\uk\\ + \\ek - e\\ \\v\\ ,

we have auk—+e(v). Similarly we can show t h a t there exist a sub-
sequence {ut} of {uk} and a nonzero constant beC such t h a t but —>e(w)..
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It follows now that be(v) = ae(w), which shows that e(H) is one dimen-
sional. This completes the proof.

LEMMA 2. Let H be finite dimensional, p a complementor on A
and Ep the set of all p-projections in A. If Ep is a closed and
bounded subset of A, then p is continuous.

Proof. Let ee E and let {en} be a sequence in E such that en —* e.
Write en = un 0 un, e = u 0 u, where un, ue H and \\un\\ = \\u\\ = 1
(n = 1, 2, •)• Since if is finite dimensional, there exists a subsequence
{uk} of {wΛ} such that uk—>uf for some u' e H; clearly \\u'\\ = 1 and
u' ® u' = u $ξ) u. Thus u = <m', where a = (w, %') and | α | = 1. Let
%£ = auk. Then eΛ = MJ. 0 uf

k. Let P be the p-derived mapping of p.
Since P(ek) is a minimal idempotent and since P(ek)A = e^A, we can
write P(βfc) = u'k 0 i/Λ, where vj. 6 i ϊ (fe = 1, 2, • ). Similarly P(e) =
M ® ? ; with veH. Since 2£p is bounded and since | | i 4 | | = 1, {v'k} is
bounded. Since ΐf is finite dimensional, there exists a subsequence
{v't} of K } such that v't-+v' for some v'eH. As 11 JP(ββ) 11 ̂  1, v' Φ 0.
Since P(βt) = % ί 0 v j — > % 0 # ' and since E'p is closed, it follows that
also u§§v'eEp. Then both u(g)v',u(ξs)veEp. However, by [1, p.
466, Lemma 5.1] for any ueH, there exists a unique such v. Thus
v — vr. Hence P(et) —> P(e). Therefore P is continuous and so is p.
This completes the proof.

3* Main theorem. Throughout this section A will be a i?*-
algebra with a complementor p. Then A is dual (see § 1). Let {It: te T)
be the family of all minimal closed two-sided ideals of A. Then, by
[3; p. 221, Lemma 2.3], A = (Σ* ̂ *)o> the 2?*(oo)-sum of / t. Since each
It is a simple dual B*-algebra, It = LC{Ht) for some Hubert space
£Γt(ί e T). It has been shown in [4; p. 652, Lemma 1] that p induces
a complementor pt on It1 which is given by pt(R) = p(i?) Π /« for all
closed right ideals R of It(te T).

Let E (resp. 2£t) be the set of all self-adjoint minimal idempotents
in A (resp. in It) and let Ep (resp. El) be the set of all ^-projections
in A (resp. in It). Clearly Et = E f] It and Eι

p = Ep f) It(t eT). It can
be shown t h a t , if u Φ v(u, ve ϊ 7 ) , then \\eu — ev\\ = 1, for all eueEu,
and ev e Ev. Since each β e E belongs to some Ity E = \Jt Et. Similarly,
if u Φ φ ^ e ϊ 1 ) , then \\fu - fv\\ = maximum (\\f \\, \\fv\\) ^ 1, for all
fu e Ep and fveE£; Ep = \JtEl. Thus p is continuous if and only if
pt is continuous for all teT (see [1; p . 464]).

THEOREM 3. Let A be a B*-algebra which has no minimal left
ideals of dimension less than three and p a complementor on A. Then
the following statements are equivalent:
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( i ) p is uniformly continuous.
(ii) There exists an involution *' on A for which Rp =

for every closed right ideal R of A (and hence there exists an equi-
valent norm || | |' on A which satisfies the B*-condition for *').

(iii) The set Ep of all p-projections in A is a closed and bounded
subset of A.

Proof, (i) —(ii). This is [1; p. 477, Th. 7.4].
(ii) => (iii). Suppose (ii) holds. Let El be the set of all p-projec-

tions in It(teT). By [1; p. 465, Corollary 4.4], each fteE} is self-
adjoint in *'. Hence \\ft\\' = 1. Since each El is the set of all self-
adjoint (in *') minimal idempotents in It1 by Lemma 1, El is closed in
|| | |'. It is now easy to show that Ep is closed and bounded in || | |.
This proves (iii).

(iii) => (i). Suppose (iii) holds. If Ht is finite dimensional, then
since It — LC(Ht), it follows from Lemma 2 that pt is continuous. If
Ht is infinite dimensional, then by [1; p. 471, Th. 6.8], pt is continu-
ous. Therefore each pt is continuous and so p is continuous. We
now show that p is uniformly continuous. For each te T, let Qt be
a ^-representing operator of Ht onto itself (see [1; p. 467, Definition
5.4]). By [1; p. 470, Th. 6.4], Qt is a continuous positive linear operator
with continuous inverse Qγι

m We may assume that | |QrΊI = h where
HQrMI denotes the operator bound of Qγι on Ht(t e T) (see [1; p. 472,
Corollary 6.10]). We claim that {||Qt||} is bounded above. On the con-
trary, we assume that there exists a sequence {Qn} c {Qt} such that
\\Qn2\\ ^ 5nf where QT denotes the square root of Qn (n = 1, 2, •••)•
Since | |Q"11| = 1, we can choose uneHn such that \\un\\ = 1 and
\\Qnun\\^2. Since | |QJ/ 2 | |^5w, we can choose vneHn such that
| |vn | | - 1, (un, vn) = 0 and \\Q\l*vn\\ ^ 5n. Let an = \\Qψvn\\~ι and hn =
anvn + un. Then

(K, QnK) - (un, Qnun) = ai(vn, Qnvn) + an(Qnun, vn)

+ an(vn, Qnun)

^l-2an\\Qnun\\

^ 1 - 4αn .

Since an ^ 1/5^, we have

(K, Qnhn) - (un, Qnun) ^ 1 - i i
on 5

Therefore

— ^ (K, QJιn) - (un, Qnun) = an(vn, Qnhn) + an(un, Qnvn)o
^ an\{vn, Qnhn)\ + 2an .
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Hence we get

Now let

f = K 0
(K, QΛn)

By the definition of Qn,fneEp. Since ||feΛ|| ^ | |wj | = 1 and since

(feΛ, Qnhn) = a\{vn, Qnvn) + an(Qnun, vn)

+ an(vn, Qnun) + (un, Qnun)

it follows from (#) that

II f /.. \ | | _ \(V», QnK)

" — (K,QnK) 5
Since ||v*|| = 1, ||/«|| > (w — 2)/5, contradicting the boundedness of Ep.
Therefore {||Qt||} and {HQr111} a r e bounded. By using the argument
in [1; p. 479], it is easy to show that p is uniformly continuous. This
completes the proof of the theorem.

Finally we give a characterization of the boundedness of Ep.
Let R be a closed right ideal of A and let PR be the projection

on R along Rp, i.e., PR(x + y) = x for all xeR,yeRp. Since Rp =
{# e A: PΛ(α0 = 0}, P^ is continuous. Now let {Jλ: XeΛ} be the set of
all minimal right ideals of A. Since A is dual, each / ; is automatically
closed. For every XeΛ, let Pλ be the projection on Jλ along

THEOREM 4. Lei A δβ α B*-algebra with a complementor p. Then
the following statements are equivalent:

( i ) The set Ep of all p-projections in A is a bounded subset of A.
(ii) {|Pλ\: λ e A) is bounded, where \Pλ\ denotes the operator

bounded of Pλ.
(iii) There exists a constant k such that

Λ H ^ + ^ H ^ I I ^ H ( i = 1 , 2 ) ,

for all Xj_ e Jλ, x2 e p{Jχ) (λ e Λ).

Proof, (i) ==> (ii). Suppose swp{\\f\\:feEp} ^ c, where c is a con-
stant. Let / be a minimal right ideal of A. Then there exists an
/ € Ep such that J = fA and Jp = (1 - f)A. Let xeA. Since
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Pλ\ < c. This proves (ii).
(ii) ==> (iii). Suppose t h a t sup {\Pχ\: XeΛ} <; k — 1, where A: is a

constant. Then, for all Xί e Jλ, x2 e p(Jλ) (XeΛ), we have

p J I <̂  (k — 1) \\x1 + a?2|| ^ k \\xj_ + a?2|| .

I t now follows from \\x2\\ — \\Xi\\ S \\Xi + #211 t h a t 11 #211 ^* & 11 #1 + #211 ••

(iii) => (i). Suppose (iii) holds. Let feEp and xeA. Since # =

(1 — f)x + fx, by (iii), fc | | x | | ^ | | /x | | . As a j?*-algebra, A has an

approximate identity {ea}. Since | | β α | | ^ 1, | | / β α | | ^ k\\ea\\ ^ k. I t now

follows from | | / β α | | ~-> | | / | | t h a t | | / | | ^ fc. This completes the proof of

the theorem.

I t is Professor B. J . Tomiuk who aroused my interest in this topic.

I wish to express my hearty thanks to him. I also wish to thank the

referee for discovering an error in my previous demonstration of

Theorem 3.
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