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In this paper a nonlinear boundary value problem for
elliptic partial differential equations is considered. The princi-
pal result generalizes a previous result on a two point bound-
ary value problem for a nonlinear second order ordinary
differential equation. The solvability condition obtained for the
nonlinear problem is related to the eigenvalues of an associated
linear problem,

In [5] the second author and D. E. Leach considered the two point
boundary value problem

w”’ + p(, u, wu = h(x, u, w')
1.1)
u0) =a, u(x) =0b.

It was shown that, if for some integer N there exist numbers vy
and vy, such that

N <7y 9@, 8 1) = T < (N +1)°,

if p(x, s, ) and h(z, s, 7) are continuous on [0, 7] X (— o0, ) X (— o, ),
and % is bounded, then the problem (1.1) has at least one solution.

In this paper we consider the u-dimensional analogue of the
problem (1.1) which is

(1.2) du + p(x, u, L y o Ju )u = h(w, 2 ou ce ou ) )

. , -
ox, oz, ox, o,

w(x) = g(x) on oD ,

where D is a domain in B and 4 is the =-dimensional Laplacian.
The corresponding result is that if D is a Dirichlet domain, if there
exist numbers v, and 7v,., such that

Ay < Ty =P T 8, 200y 80) S Vovwn < Ay
for (x, ¢, s, +-+, s,) €D x R""* where
QS0 S oo S0 SO S 00
are the eigenvalues of the problem
(1.3) du + au = 0, % =0 on aD ,
if p(x, t, s, -+, 8,), h(x, t, s, -+, s,) are continuous and 2 bounded on
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312 E. M. LANDESMAN AND A. C. LAZER

D x R*, then for any continuous g(x) there exists a function v con-
tinuously differentiable on D with #(x) = g(x) on 3D which satisfies
(1.2) in the distribution sense.

With the exception of the Schauder fixed point theorem the
methods used in [5] were very elementary. The methods in this paper
are similar to those of [5] but rely strongly on the spectral theory of
symmetric completely continuous operators and variational properties
of eigenvalues.

In the second section we consider the linear homogeneous problem

(1.4) Lu + p@)u = M), # =0 on 0D

where L is a strongly elliptic self adjoint operator and D C R™ is an
arbitrary domain. Under suitable conditions on » and 2 we obtain
an a priori bound for solutions of (1.4).

Using this result and Schauder’s method we obtain an existence
theorem for the problem

ou o ou ou
1.5 L Uy 7"—""’_“"‘) :h<‘y ’_7""—>:
(1.5) u + p(@ u 5, o, U x, U 5% 55
% =0 on oD .

The aforementioned result follows quickly from this theorem.

A special case of our principal result follows in a straight-forward
way from a result on Hammerstein integral equations due to C. L.
Dolph [4]. Namely, if F(x, t) is continuously differentiable in ¢ and
x and continuous for (z, t) € D X R, if k() is continuously differentiable
on D, and

0
Oy < Ty = a—Ft’(% 1) = Yy < Qysy

then the problem
1.6) du + F(x, u) = h(x), u =g on oD,

g continuous, has a unique solution in the classical sense.
To see that this problem is included in the problem (1.2) we note
that the differential equation can be written

du + p(@, wyw = h(z), where
(@, 1) = Slﬁ%m, swds, h(x) = h@) — F@, 0) .

Clearly 7y < p(x, £) < Vyi1e

2. Preliminaries. In this section we recall briefly results con-
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cerning elliptic differential equations, completely continuous operators,
and variational properties of eigenvalues in forms applicable to our
problem. We also give an auxiliary lemma which is applied in the
next section.

Let D be a bounded domain in R*. In the following L will denote
a second-order, self adjoint, strongly elliptic differential operator in-
volving only principal part. That is, a formal expression

0
o

where for 2,5 =1, -+, m, a*¥ = a’¢ is a real valued function bounded
and measurable on D and there exists a constant ¢ > 0 such that for
all xe D

@.1)

I Ms

3 S z e R e

for arbitrary real numbers &, ---, &,.
Let H, denote real L*(D) and if f, g€ H, let

{fy 00 = Sngdm .

More generally if p is a real measurable function defined on D
such that there are numbers 6 > 0 and 4 with

(2.2) 0<o=pk)=4
for all ze D, let
<f5 g>0,p = Sppfgdx .

Clearly < >,, defines an inner product on H, which induces the
same topqlogy on H, as {, .

Let C, denote the inner product space of real continuously dif-
ferentiable functions defined on R" and having compact support con-
tained in D with real inner product given by

o= [ [+ S22

for w, ve C,. Let B be the symmetrie bilinear form defined on C, by

n

=, 50 2 2

D=1 j=1 axj

The boundedness of the a‘/, the strong ellipticity condition (2.1), and
Poincare’s inequality [1, p. 73] imply 1§he existence of positive constants
K, K,, and K, such that for all wcC,
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(2.3) K. (u, wy, < B(u, u) ,
2.4) KLu, uy, < B(u, uy £ Klu, w), .

Let I-OL denote the real Hilbert space obtained by completing C, with
respect to <, >,.. It is known that the underlying space of I?L may
be assumed to be a subset of H, ([1, p. 2]). The quadratic form B
may be extended by continuity to Ijﬁ and as a consequence of (2.4)
defines an inner product on ﬁl which induces the same topology on
foIl as {, >.

The following definition connects the operator L and the quadratic
form B: Let fe H,, A weak solution of the boundary value problem

(2.5) Lu = —f, % =0 on 0D

is a member v of 11071 such that

(2.6) B(p, v) = <¢: f>o

for all goeﬁl. _ This definition is motivated by multiplying (2.5) by a
member ¢ of C, and formally integrating by parts. The additional
condition v = 0 on 0D “in a weak sense,” is 1nterpreted simply to
mean v € H Since the linear functional L, defined on H by Lip) =
{p, f>, is continuous, by (2.3), it follows by the Riesz-Frechét theorem
that there exists a unique v e 1%[1 such that B(p, v) = Lp) = {p, /)
for all pe Ii. Hence there exists a unique weak solution of (2.5).

More generally if p is a function which satisfies a condition of
the form (2.2) and fe Iofl then the linear functional L, ; defined on I%l
by L, Ap) =<p, D, is continuous so there exists a unique T,f ¢ H,
such that

(2.7) B(p, Tof) = Ly, (@) = <@s for

for all p € Ioil. This defines a linear map T,: H,— I;L but since ﬁchO
we may consider T, as a linear map from H, into H, As a conse-
quence of (2.2) and (2.3) it follows that 7, is continuous and maps
bounded subsets of H, into bounded subsets of 11071. Thus, by Rellich’s
selection principle [1, p. 30], T,: H,— H, is completely continuous.
Moreover T, is symmetric and positive with respect to the <{, >,
inner product. Indeed, if f, g € H,, then by taking ¢ to be T,f and
T, in (2.7) we obtain

LT, fs 9000 = B(T,f, Tyo9) = B(Ty9, T,f)
= LTo9, o0 = Ly TG,

If for some fe H, T,f =0 then <p, >, =0 for all e C, and since
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C, is dense in H,, f=0. Thus if fe H, it follows from (2.7) by tak-
ing @ = T,feH, that <T,f, 0, = B(T,f, T,f) s0
(2.8) Tofy fou, >0 if f#0.

Applying the results of §93 and 8§94 of [7] to T,, we infer the
existence of a sequence of real numbers {\.} and a sequence {p,}7 in
H, such that:

(2.9) @r = N Ty
(2.10) Py Pidop = On; = {0; k= j
L;k=3y
(2.11) TFf=13 S ;Dk>o,p .
fe=1 L

for all fe H, and if ¢ = N, forall k =1, 2... the mapping [I— p«T,]:
H, — H, is bijective and has a continuous inverse defined by

(2.12) = pT,] % =g+ p5 $8Pus g,

k=1 7\’15 - #
Moreover, the sequence {\,} has no finite cluster point so we may
assume by (2.8) that

(2-13) 0<>\’1§)\’2§"'§>"I:£>\’k+1§"

Using (2.7) and (2.9) we obtain

B, ) = <6’, >\’k§Dk>0,p = <3, )\’kaDk>0

for all 06}}1 Hence, for each £ =1,2, .--, ¢, is a nontrivial weak
solution of the boundary value problem

Lu + Np(x)u = 0, % =0 on 0D .

We therefore call A, a weak eigenvalue corresponding to p.

In the following we will want to consider different functions
which satisfy a condition of the form (2.2) so henceforth we write
e =MD B=1,2, 0.,

A result in §93 of [7] and (2.8) implies that the sequence {p.}
is complete in H, so Parseval’s formula

(2.14) (F Flow = S4F P

holds for all fe H,. We now derive a similar identity involving the

space Iiﬁ and the inner product B.
Using (2.7), (2.9), and (2.10) we have
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B(pw 95) = BOw(0) Tp@rs @5) = M(DKPrs PiDos = Mi(D)0s;

which shows that the sequence {(1/1/\,(p))p.) in }}1 is orthonormal

with respect to the inner product B. If for some 8¢ I-OL, B(p, 0) =0
for all £ then by (2.7) and (2.9),

{piy 00,, = 0 for all &,

0 8 = 0. Thus the sequence {(1/1/\(D))@:} is complete in I—i and by
Parseval’s formula

B, 6) = zza( T 0)2.

Using (2.7) and (2.9) we may rewrite this in the more convenient form

(2.15) B, 0) = 3 M(pK0, 9% -

The identities (2.14) and (2.15) together with (2.13) now yield the
following variational characterization of the weak eigenvalues in terms
of the inner products B and < >, ,:

M(D) = min {B(, 0)|6 € H, <8, 05, = 1)
B, ) |6 e H, <0, 6, = 1,
<ﬁy ¢>o,p = 0;.7 = 11 ey k

Indeed if 0eH, <0, 0>,=1 and <4, >, =0 for all j=1,---,k
then by (2.13), (2.14) and (2.15)

(2.16)
Ng+(P) = min

BO,0) = 3 Ml®)X0 @udhs Z Mea®) 3% <0 pdhs
= >\’k+l(p)<0! 9>o, » = Npa(D)

while B(®y1, Prri) = Mere  The verification of the first identity in
(2.16) is similar.

The proofs of the following two lemmas are essentially the same
as the proofs given for similar results in [2, Chapter 6].

LemmA 2.1 (Courant). If for v, ---, v, in H, one defines

B(6, 0)0 € H,, <0, 65, = 1, }

ﬂk(p)(vu MR ’Uk) = lnf{
0,900, =05 =1, -+, k

then

1 °°° 7 HO,
Nesi(D) = sup {{l"(p)(v v |0 € } :
] = 1’ soe, k
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Proof. Since we have established above that \...(p) = t.(») (e,
-+, @) we need only show that for arbitrary v, ---, v, € H,

(2.17) D)Wy« o0y ) = Npra(D)

Given v,, +--, v, € H; let ¢;,7=1,---,k + 1 be numbers such that

Sttt e, 0.0, = 0 for ¢ =1, ---, k and Yfiiel = 1. If 0 = Sk e,

then <0, v>,, =0;4=1, ---, k and <0, 6>,, =1. Thus from (2.15),

D),y -+, 1) = B(O, 0) = SEE (D) = M) S 6 = Nga()-
This proves (2.17) and hence the lemma.

LEMMA 2.2. If p and q are two real measurable functions de-
fined on D each of which satisfies a condition of the form (2.2) and
iof for all xe D

(2.18) () = q(2)
then
(2'19) 7\’J(q) g A‘_7(1));.7. - 17 2: ctt .

Proof. If ve H, let

(2.20) (x) = (g(=)/p(@))v(x) .

Let v, +-., v,€ H, be arbitrary, k = 1. We assert that

(2'21) ﬂk(Q)(vu %y /Uk) é /"k(p)(ﬁu ) {]\k) .

To prove this inequality we note that if ¢ > 0 it follows from the
definition of . (p)(¥, ---, ¥,) that there exists #c H, such that
<07 ‘9>0m =1, <0’ 67‘>0,p =0;5=1,---,k, and

(2.22) B(0, 0) = poN D, -+, Tp) + €.

If 6* = (1)1/<0, 6),,)0 then using (2.20) we obtain

0% 000 = 0%, 00, = 0,5 =1, o, k.
Consequently, since <#%, 6*>,, = 1, we have the inequality
(2.23) 2y, -+, v) = BOF, 0%) .
Since B(6*, 6*) = (1/K0, 6>,,)B(9, 6), and

149, 6>, = S pode < S qt*dz = <6, 6,, ,
D D
B(9*, 6*) < B(4, 9) .

Combining this inequality with (2.22) and (2.23) we obtain
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@)Wy, <oy ) S (0D o0, D) + €,

and since ¢ > 0 is arbitrary (2.21) follows.
Now as v ranges over all elements of H, ¥ ranges over all ele-
ments of H, and conversely. Hence for & = 1, Lemma 2.1 implies

#k(Q)(vly Tty ’Uk) | V; € Hoy}
j = 1, ey k

#k(p)(?’)\n ct Yy 77Ic) | /Uj € Hoy}
j=1,.-4,k

P {#k(p)(vn ct Yy vk) ’ V; € Hov
j =1, ..., k

Nera(Q) = sup{
< sup 1

} = Npa(D)

and this proves (2.19) for 7 = 2. The proof for j7 =1 follows from
the first identity of (2.16) and an argument similar to that given

above.
In the following lemma the sequence {«,};> will be defined by

(2.24) a, = (1) E=1,2 ...
so that each «, is a weak eigenvalue for the problem
Lu + 2 = 0, w=0onoD.
We let v, and vy, denote fixed numbers such that for a fixed integer N,
(2.25) Ay < Ty < Vw1 < Aypy o

P (Vyy Tus) Will denote the set of functions p, measurable on D,
such that

(2.26) Yy = p(®) < Yyy, for all zeD.

LEMMA 2.3. If he H, and pe€ FP(Ty Yyi) there exists a unique
weak solution of the boundary value problem

(2.27) Lu + pu = h, =0 on oD .

Moreover there exists a number M, independent of D€ .F(Vyy Vy+1)
such that if v denotes this weak solution then

(2.28) B(v, v) < M, B, .

Proof. The condition that » be a weak solution of (2.27) is
equivalent to the condition that for all p € H,

B(p, v) = <{p, pv — by = Lp, v — k/D)s,,
or by (2.7) that
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(2.29) [ — T,Jv = T,[—h/p] .
By (2.12) this equation can be solved uniquely for v provided that
(2.30) M(p)=1forall k=1,2,..-.
From the inequality (2.26) and Lemma 2.2 we have
(2.31) Me(Vava) S WD) E MV b= 1,2, «-

Clearly, for all £k =1,2, ---,

Nelry) = ny(l) = Lo
N /YN
_ 1 _ G
Ne(Vws) = A1) = s
N1 N1

and hence from (2.25),

(2.32) @) S M®) £ -0 < (@) E Mylry) = 22

N

[44
<1< 7—N+L = Ay (Varn) S Aya(D) = Xyo(p) < -+
N+1

Thus, if

o =min[1 - &, Lo _q],
Ty Vvn

then for all p e .F°(uy, Uy,
(2.33) Ne(p) —1|=d forall k=1,2, ---.

Consequently, (2.29) has a unique solution which by (2.11) and
(2.12) is given by

v=[I- TprlTp[—%] = T,lI - Tp]“l[—%]

= Tp[_% + i {—h/p, (Pk>o,p@k]

k=1 Ne(p) — 1
— S <—h’/p’ ¢k>0,p§Dk - <“h/pv Pio,sPr
= Mi(D) T M(P)Mi(p) — 1)

— S <‘"h/p1 ¢k>o,p§0k .
’Z‘l M(p) — 1

Hence, from (2.15) and (2.33) we have
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B, v) = 3 MoKy, 9oty = 3 ng(—p ?/z_o, §;>3,p

_1_ (D) < s 2
= < sup |———M(p) — jk§=L< kD, 9% -

A

Since the function ¢/(t — 1) is increasing for ¢ < 1 and decreasing
for ¢t > 1, the inequalities (2.32) together with the last inequality and
Parseval’s identity (2.14) yield

B('I), 'U) g (L/5)<'—h’/pv _h/p>o,p ’
where

L — maX[ aA’/,YA’ , aN—H/’YNle ] .
1 - aZV/’YN al\”.-l/fYNAH - 1

Thus if M = L/v,0, then M is independent of pe& 7 (vy, Yy+), and
since

Chipy = e, = | pPode = 1| peda
b p Yy JD

we obtain (2.28). This proves the lemma.

3. A nonlinear problem. In this section v, and v, will
have the same meaning as in Lemma 2.3. We will assume that
oz, r, 8, +++, 8,) and h(x, 7, s, ---, s,) are real valued functions de-
fined and continuous on D x R"*,

(3.1) Vv = D@, 7y 8y 000y 8) = Vs

for all (x, 7, s, +++, s8,) € D x R***, and for some constant L
(3.2) | h(, 7y 8y, o+ ey 8,) | = L

on D x R**.

THEOREM 3.1. Under conditions (3.1) and (3.2) there exvists a
wealk solution of the boundary value problem

o o ou ou
3.3 L '<x,u, ,---,—>u=h<x,u, ,---,———>,
(3-3) wrp 0%, ox, o, ox,,

=0 on oD .

(Here (ou/ox,), k =1, -+-, n denote the strong L*(D) derivatives of u,
i.e., there exists a sequence {u,} in C, such that

| — w, ], — 0, 0% Oun —0, k=1, m
0%, oz, 1o
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as m— o.)

To prove Theorem 3.1 we use the well-known Schauder method
and two auxiliary lemmas.
If we H,, then by (3.1) and (3.2)

p(xv w, ow y 0ty ———— ow >e'?(f\/1\771\+1)1 <x, w, a_wy "'ya—w>eH0 ’
693% axl

[h<x, fw,-a_w_, cen, aw> :

<R=1L* D.
o, oz, - meas

Therefore by Lemma 2.3 there exists a unique w*e H1 such that w*
is a weak solution of the problem

ow ow ow ow
3. L (y y Ty Tty :h<‘7 y—""y——>y
(3.5) uw + plx, w 5. . )u T, W 5. oz,
u=0on oD.

Furthermore, we have by (2.28)
(3.6) B(w*, w*) < MR for all we H, .

We define a mapping G: H ——>H such that for weHl, G(w) = w*
is the unique H weak solution of (3.5). If S ={ue H | B(u, w) < MR}
then since B is an inner product on Hl which induces the same to-
pology on H1 as {, >, S is a closed, bounded, and convex subset of
Hl. Now according to (3.6), G(S) & S, so if it can be shown that G
is a compact mapping and that G is continuous then by Schauder’s
theorem ([3, p. 131]) there exists a veH1 such that G(v) = ». Con-
sequently » is a weak H1 solution of (3.5). Accordingly, Theorem
(8.1) will follow from the next two lemmas.

LEMMA 3.1. The mapping G s compact.

LEMMA 3.2. The mapping G is continuous.

To prove Lemma 3.1 we show that if {«,} is any sequence in H1
then there exists a subsequence {G(u,,)} of {G(w,)} which converges
in the H1 norm defined by the B inner product. Suppose then that
{u,} is such a sequence. For convenience we set

o o
m = h’( y Wy - s * %y -
Fal@) = 1@ thmy o, )

ou,, 0, )
- Ty Uy y *°° Um (T
p( “ ox, " ox, (@) -
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Using (2.3), (3.1), (3.2) and (3.6) and setting » = L1 meas D +
Yy V' MRJ/K, we obtain the inequality

(3.7 |fule =7

valid for all m = 1,2, -... By the way f, is defined, uX = G(u,) is
the weak solution of the problem

U= —fnu=0o0n oD,

and hence
(3.8) Blp, u2) = <@, fdo for all pe H, .

By (3.6), B(u}, ;) < MR so by (2.4) the sequence {u}} is bounded
in the H, norm. Using Rellich’s selection theorem ([1, p. 30]) we
infer the existence of a subsequence {u;,} of {u;} which converges in
the H, norm.

From (3.8) it follows that for arbitrary integers p and ¢ and

arbitrary o€ Hl,
B(<P’ u:q - u:;p) = <@s fmq - fmp>o .

Thus, taking ¢ = Um, — u,’;p in the above and using the Schwartz
inequality and (3.7)

Bug, — tm,y U, — U ) < 20| Up — U o

Thus, since the sequence {u,, } is Cauchy with respect to the | |,
norm, it follows from (2.4) that {u, } is Cauchy W1th respect to the
H norm and hence converges to a member of H This proves
Lemma 3.1.

The proof of the continuity of the mapping G is less straight-
forward. We will first show that regarded as a map from H1—+Ho, G
is continuous and then apply an argument similar to that given above.

ProroSITION 3.1. The mappings

ou ou
3.9 —pla, u, 2=, .., 22 )
(3.9) “ p(ao “ 0x, 690”)
and
(3.10) u—»h(x, w, 9% .. 3_u>
ox, 0x,,

from H,— H, are continuous.

Since the proofs of both assertlons are similar, we only prove one.
Let {u,} be a sequence in H and % a member of H such that
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=l = | [ —wy o+ 35 (2 — 2 ) o0

0x; o,

as m — oo. Choose ¢ > 0 and define

R(e) = {(x, t, Sy cee,8)eD x R+ 82 + kZ:,lsi < 512 }
By the compactness of R(¢) there exists a number ¢ > 0 such that
|D(, 8, 8, 20y 8,) — D@, &y 8], -00, SL) [ S €
if (x,t, 8y -++s,) € R(¢) and
(t — ) + é(sk — s =00,

Let

Ae) = {m e D|u(x)

and for each integer m define

B,(0) = {we D|((e) — u,@) + 3, (";‘(Z”) a?g;i”)y > 52} :

Since,

1 meas A(s) < S [u(xf + Z, o x)]
et A(e) k=1 ox,
meas A(e) < &ul?,
and in a similar manner we obtain the estimate

meas B, (0) < (1/0% thm — ul}.

For convenience we set

(3.11) A@) = p(x w(@), a“i%) 5(’;0;93))

oum(2) | aum(x)> )

3.12 Am C) = m<wy m L)y y )
(3.12) Pu(®) = D U () v 2,

If xe D — (A(e) UB,(0)) then |p(x) — D.(x)]? < &, so by the above
P~ pulde + | 1 — Pultde

~ ~ 2
D—(A()UBpp () A UBp(3)

=< & meas [D — (A(c) U B,(d0)] + 4v%,, meas [A(e) UB,.(0)]
< e meas D + 47§H1|:_|ﬁﬂ5:_u[f + e2|u|f] .



324 E. M. LANDESMAN AND A. C. LAZER
This shows that
lim [P — .| < ¢’[meas D + 473w, [

and since ¢ > 0 is arbitrary, lim,_ .| — D.[; = 0. This proves the
continuity of the mapping defined in (3.9) and the proof for (3.10) is

similar. In a similar manner one proves that the mapping from H, — H,
defined by

ou ou
k(x, U, >

ox,’ ’ox,
(3.13) U — ( F” P >
p x! u? b I a—

ow, ox,

is continuous.

PROPOSITION 3.2. Let {D,} be a sequence in 7 (Vy, Ty+1) and suppose
|Pw — Dlo—0 as m — o for some pe.F(Yy, Yyi). If {T;,} and T;
are the operators defined by (2.7) then T, converges strongly to T;,
ie., |Ty, w— Tyw|,—0 as m — o for each we H,.

Proof. According to (2.7) if we H, and pe€ ISL then
Blp, Tyw — T;,0) = | (bn — Pluwpds .

Now lim,,_..| §., — P} = 0 implies that P, converges to p in measure.

Thus, since [(p.(¥) — D) w(@)P(@)| = 27y w@)p(@)| and we e LI(D),

by the strong form of Lebesgues’ dominated convergence theorem [6,

p. 149], 1imwg (B — Pywepde — 0. This shows that Tyw — Tsw as
D

m — o weakly in Ii and hence by Rellich’s theorem lim,, .. T; w= T;w
strongly in H,.

ProposITION 3.3. The mapping w— G(u) 1s continuous from
H,— H.

Proof. If pe.Z(Yy, Yyi) let || T,ll, and || T,||,, denote the norms
of T,: H,— H, relative to the inner products <, >, and {, >,, re-
spectively. The identity (2.11) and Lemma 2.2 gives the inequality
N Tolloe < 1/A(D) < /N (Vyy). Similarly (2.12) and (2.33) give

I — T oy =1 + 1/0 .

Therefore from the inequality <{w, w)} < 1/v,<{w, w),, valid for any
w e H,, we have the estimates

(3.14) 1 Tll < AVYIAN(Tr1) = A
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(3.15) I — Tl = AV + 1/0) = A4, .

Let ueI—i’1 and suppose {u,} is a sequence in I-OL such that
[ — %,,—0 as m— . Let p and P, be defined as in (3.11),
(3.12) and set

ﬁm:k<x5um9 8um’_“’8um>’ ﬁ:h(x,u, ou J"‘,ﬁ‘b“>-
o, ox,, ox, 0%,

Let #* = G(u) and #* = G(u,). For each m, u} is the weak solution
of the boundary value problem

Ly = —(put — h,), v=0 on 0D

so for arbitrary ¢e I;L,

B(QDy ’M;’,‘L) = <¢7, ﬁmur):b - hm>0 = <¢)’ uj;, - hm/ﬁm>0,5m
and hence

wh = Tp [uh — ho/Bal »
w* = Tlu* — hip] .
From the equation
w — uk = Tﬁm[”* —un) + [T — T3, Ju*
+ Ty (bl — IB] + [T, — T51hID
we obtain
u* — uk
=[I—T;, 17Ty — Ts )w* — hjp] + [ — T, 17 T3, [h/ B — hID] -
Therefore by the estimates (3.14), (3.15) we have

+ AA | R |B — BB, -
By Propositions 3.1 and 3.2,

lu* — ukl, < ATy — Ty, )w* — k/p)l,

(Ty — T )u* — h/p)|,— 0 as m— o,
and by the remark following the proof of Proposition 3.1,
|k\m/ﬁm_ﬁ/ﬁlo__’0 as m — oo,

This concludes the proof of Proposition 3.
Lemma 3.2 now follows easily. Let % and the sequence u, be as
above. Define f, = h, — D uk, f=h — pu*. From B.7) |fulo =1,

|fl, < r. Referring to the proof of Lemma 3.1 we see that for any
pe H,

B(p, w* — uy) = <<Ps f— fm>o y
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so by taking ¢ = u* — u) we have
Bu* — up, w* — ug) = u — un, f = fado

Z 20U — Uyt -

By Proposition 3.3, B(u* — u}, u* — u}k)— 0 as m — . This proves
the continuity of G: H, — H, and concludes the proof of Theorem 3.1.

4. Smooth solutions of an inhomogeneous problem. In this
section we will assume that D c R" is a Dirichlet domain and L = 4
where 4 is the n-dimensional Laplacian.

If f is continuous on D and has continuous partial derivatives on
D, then the weak solution of the problem

(4.1) du = — f(x), % =0 on oD

is actually a solution in the classical sense and can be represented
in the form

4.2) Wy = | 6@, y)f@ds,  yeD,
where G is the Green’s function for the problem (4.1).

THEOREM 4.1. If p and h satisfy the conditions (3.1) and (3.2)
of Theorem 3.1 and g is continuous on oD, then there exists a weak
solution v of

ou o ou o
43) tu ( ,ow ., 0w :h< __>
4.3) + ple, w o 5o )u @, U 5 5o

such that v has continuous derivatives on D and
4.4) v(x) = g(x), xeoD .
Proof. Since D is a Dirichlet domain there exists a function w

such that w is continuous on D, 4w =0 on D, and w(x) = g(x) on
oD. If

P(ib‘, ty Sy c o0y Sn)
(4.5)

:p(m,t+ w(®), 31+M, cee,s, + M)
axl 8.’1;”
H(x7 ty Sly crey Sn)
= h(m t+ w®), s, + M, cee, s, 4 ow(x) )
(4.6) ox; ox,,

— P(x, &, 8 + -, 8,)w(x) ,
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then P and H will satisfy conditions of the form (3.1) and (3.2).
Consequently, by Theorem 3.1 there exists a weak H, solution
V of

Au+P(%,u —ai, “ee, 0% >24,:H(9c,u, 0% , ...ya_u>.

o, ox., oz, ox,
We assert that if ye D,
(4.7) V) = | Gl WF@ds
where as in (4.2), G is the Green’s function and
. ov. . oV BV ..oV
FAP(x, Vi >V H@ Vil 2 )

Indeed, V is the weak IOL solution of du = —F so V = T.F where
T, is defined by (2.7). If f is continuously differentiable on D then
by (4.2) for ye D

(T.F)(y) = SDG@:, W) Fw)de .

Now if f is merely in L* D), the operator S: Ii —»I;L defined by

(Sf) ) = SDG(% V() de

is continuous. Therefore, since S and T, agree on a dense subspace
of I/(D), T, = S, whence (4.7) holds.

From the representation (4.7) and the fact that F is in L=(D),
it follows by standard arguments of potential theory that ¥V has con-
tinuous derivatives and vanishes on the boundary of D. Setting
v=V + w we see that v satisfies the assertion of Theorem 4.1.
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