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EXTREMELY AMENABLE ALGEBRAS

ANTHONY TO-MING LAU

Let S be a semigroup and m(S) the space of bounded real
functions on S, A subalgebra of m(S) is extremely left
amenable (ELA) if it is (sup) norm closed, left translation in-
variant, containing constants and has a multiplicative left in-
variant mean, S is ELA if m(S) is ELA. In this paper, we
give a method in constructing all ELA subalgebras of m(S);
it turns out that any such subalgebra of m(S) is contained
in an ELA subalgebra which is the uniform limit of certain
classes of simple functions on S.

A subset E = S is left thick if for any finite subset ¢ & S, there
exists se€ S such that {as; aco} S E. In §3, we strengthen a result
of T. Mitchell and prove that a semigroup S is ELA if and only if
for any subset F < S, either E is left thick or S — E is left thick.
We also show how this result may be generalized to certain subalge-
bras of m(S).

ELA semigroups and subalgebras have been considered by Mitchell
in [9] and [10], and Granirer in [5], [6] and [7]. ELA semigroups
S are shown to be characterized by the fixed point property on com-
pact hausdorff spaces by Mitchell [9] and by the algebraic property:
“for any a,b in S, there is a ¢ in S such that ac = bc = ¢” by
Granirer [5]. ELA subalgebras are characterized by Mitchell [10] by
a fixed point property on compacta (under certain kinds of actions of
S on a compact hausdorff space).

1. Some notations and preliminaries. Let S be a semigroup.
Foreachac S, fe m(S), denote by the sup norm of f, || f|| = sup,.s|f(s)|
(and it is only this norm that will be used throughout this paper),
J(8) = flas) and p,(f) = fla) for all seS. Then p, is called the point
measure on m(S) at a and any element in Co {p,; ac S} is called a
finite mean on m(S) (where Co A denotes the convex hull of a subset
A in a linear space).

If A is a norm closed left translation invariant subalgebra of
m(S) (i.e., .fe¢ A whenever fc A and a € S) containing 1, the constant
one function on S, and ¢ € A%, then o is a mean if o(f) = 0 for f =0,
and p(1) = 1; @ is multiplicative if o(fg) = @(f)p(g) for all f, g€ A;
@ is left wmvariant if ¢(,f) = o(f) for all s€ S and fe 4; and ¢ is a
point measure [finite mean] on A if ¢ is the restriction of some
point measure [finite mean] on m(S) to A. Itis well-known that the
set of [point measure] finite mean on A is w*-dense (i.e., g(A4*, A)
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330 ANTHONY TO-MING LAU

-denge) in the set of [multiplicative] means on A. Furthermore, the
set of multiplicative means on m(S) is precisely £S, the Stone-Céch
compactification of S ([3], p. 276).

A subalgebra of m(S) is [extremely] left amenable, sometimes
denoted by [ELA] LA, if it is norm closed, left translation invariant,
containing constants and has a [multiplicative] left invariant mean
(LIM). A semigroup S is [ELA] LA if m(S) is [ELA] LA.

For any subset E = S, ac S, we shall denote by E = the closure
of Fin BS, a'E ={se S; asec E}, 1, € m(S) such that 1,(s) = {(1) if. i;g
and o(E) = (1) for any @ e m(S)*.

A subset E = S is left thick if for any finite subset ¢ = S, there
exists s€S such that {as;aco} < E, or equivalently, the family
{s7'E; s€ S} has finite intersection property. Left thick subsets are
first considered by Mitchell in [11]. Clearly, any left ideal of a semi-
group is left thick. If S is left amenable, then every right ideal I
is left thick, since if ¢ is a LIM on m(S), then ¢(I) = 1; consequently,
the family {s™'I; se S} has finite intersection property.

2. The class of extremely amenable subalgebras. For any
semigroup S, and &~ an algebra of subsets of S (i.e., a collection of
subsets of S containing S and which are closed under complementa-
tion and finite union), we shall denote by

m(7, S) = norm closure of the linear
span of the set {1;; Fe 7 }.

Then m(.7, S) is a norm closed subalgebra of m(S) containing con-
stants. Furthermore, if ¢ is a mean on m(S), denote by

Z, ={E<SS; u(sE) = p(E) =1 for all se S}
7, = algebra generated by &, .

REMARK 1. For any semigroup S:

(@) &, is nonempty for all mean g on m(S) since Se¢ &,.

(b) If p is a multiplicative LIM on m(S), then m(.7,, S) = m(S).

(¢) If S has f.i.p.r.i. (finite intersection for right ideals),
reNn{sS; seS} then aSe &, for all aeS. In particular, all right
ideals of S are left thick. To see this we only have to observe that
for each a,te S, t*(aS) 2 bS where b is chosen such that tbeaS.
Conversely, if all right ideals of a semigroup S are left thick, then
S has f.i.p.r.i. since for any a, be S, there exists ce€S such that
beeaS.

(d) If S generates a group G, S has f.i.p.r.i. and ze N{sS; se S},
where the closure is taken in BG, then gSe &, for all geG. In
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fact, for any ge@G,, ¢S contains a right ideal of S ([12], Lemma 5.1)
and hence p(g7'(¢g.S)) =1 for all g, g,€G. In particular, each ¢S
(and therefore S) is a left thick subset of G, g €G.

Qur first main result is to show that for any semigroup S, every
ELA subalgebra of m(S) is contained in an ELA subalgebra m(7,, S)
for some mean g on m(S). We shall prove this result in a series of
lemmas.

LEMMA 1. Let S be a semigroup, FF < m(S) such that ,feF for
all feF and seS. If A is the smallest norm closed subalgebra
containing F and the constant functions, then A 1is left translation
wmvariant. If o(.f) = ¢(f), p € BS, for all s€ S and fe F, then @ 1s
a multiplicative LIM on A.

Proof. A is the norm closure of H, where H consists of all
functions of the form a,1 + a,9, + +++ + a,9, and for each ¢ = 1, -- -, n,
g; is a finite product of functions in F. Then as readily checked,
JheH for all seS and heH. If fcA, and h,e H such that
lim, {| k. — f|| =0, then lim,|| A, —.f|| <lim, |k, —f|| =0, and
hence ,fe A for all se€S. The last assertion can be proved similarly.

LEMMA 2. Let S be a semigroup, fem(S) and ¢ BS be such
that o(.f) = @(f) for all s€S;

@) if o(f) =0, then {seS; f(s) = 0}e &,

(b) if p(f) =0, then {se8; f(s) < cle &, for all ¢ > 0.

Proof. (a) It N = {s€§; f(s) # 0}, then o(f) = o(1,f) = p(Ly)p(f)
and o(.f) = p(,(1yf)) = p(1,w)@(.f). Hence p(N) = @(s7'N) = 1 for
all seS.

(b) Let A be the smallest norm closed subalgebra containing f
and all its left translates and constants. Then as well-known, 4 is
a lattice [2]. Define h(s) = max {c — f(s), 0}, then he A, and (k) =
@(h) for all se S (Lemma 1). Since @(h) = ¢ > 0, it follows from (a)
that {seS; h(s) = 0} = {seS; f(s) < c}e &,

LeMMA 3. For any semigroup S and E S S, +of E is left thick,
then there exists @€ BS such that (s E) = p(E) = 1 for all se S.

Proof. Let € ,css E and define ¢ € 8S by o(f) = (k) where
h(s) = ¥(,f) for all seS.

THEOREM 1. Let S be a semigroup and A be a norm closed left
translation invariant subalgebra of m(S) containing constants, then
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A is ELA if and only if A< m( T, S) for some [multiplicative]
mean p on m(S).

Proof. For any mean g on m(S), m(. 7. S) is the smallest norm
closed subalgebra containing F' = {1;; Ec %.} and constants. It fol-
lows from Lemma 1 that m( %, S) is necessarily left translation in-
variant. Furthermore, any @€ nEEZ# E (which is nonempty by com-
pactness of 8S) is a multiplicative LIM on m(.9,, S) since @(E) =
o(s7'E) =1 for all seS and Fe &, (Lemma 1). Consequently, the
restriction of ¢ to A is a multiplicative LIM.

Conversely, if A has a multiplicative LIM +, and {p,}, a.€S, is
a net of point measure on m(S) such that lim, p, (f) = v (f) for all
fe A, then any cluster point ¢ of the net {p, } in B8S is a multiplica-
tive extension of + to m(S). Let I = {feA; u(f) = 0}, feI be arbi-
trary and » > 0. For each n e Z, the integers, define

Kn,\) ={seS;wn < f(s) < Mn + 1)} .

Then S — K(n,\)e &, for all neZ — {—1,0} (by Lemma 2b) and
1f— > Om) e, n || =N, where the sum is taken over all n e Z — {—1, 0}.
Thus A =ICcm(T ., S), where C is the algebra of constant
functions, since m(.7,, S) is closed in m(S).

REMARK 2. If Sis endowed with a noncompact hausdorff topology
such that for each compact subset o = S, s™¢ is compact for all se S;
order F = {0; ¢ compact subset of S} by upward inclusion. For ¢ ¢ E,
let a,€S — 0. If p is a cluster point of the net of point measures
{p.,; 0 € E}, then for any oekE, us™(S —0)) = (S — o) = 1 for all
seS. Hence, S — o is left thick for all compact subsets ¢ = S and
the ELA subalgebra m(.7,, S) includes all functions fem(S) which
vanish at infinity. In fact for any such f (fixed but arbltrary), let
x> 0. For each ne Z, the integers, define

K(n, \) ={seS;m < f(s) < Mn + 1)} .

Since each S — K(n, \) is included in a compact subset of S, K(n, \) € j;
for all ne Z and

f— %V(M@)lmn,x) I <N.
Theorem 1 yields the following consequence:

COROLLARY. For any semigroup S, m(S) has a nmontrivial ELA
subalgebra (i.e., other than the algebra of constant functions) if and
only if S has a proper left thick subset.

Proof. If S has a proper left thick subset E, let g be a mul-
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tiplicative mean on m(S) such that u(F) = pu(s™E) =1 for all se¢ S
(Lemma 3), then Ee &,, and m(.7,, S) is a nontrivial ELA subalgebra
of m(S) (Theorem 1). Conversely, if A is a nontrivial ELA subalgebra
of m(S), then A & m(.7,, S) for some mean ¢ on m(S). Consequently,
m(7 . S) is nontrivial and hence &, contains a proper subset of S,
which is necessary left thick.

REMARK 3. The class of semigroups S for which m(S) has a
nontrivial ELA subalgebra is extremely big and they include semigroups
S which satisfy any one of the following conditions:

(a) S is finite and not right cancellative.

(b) S is infinite and left cancellative.

(¢) S is infinite and has finite intersection property for right
ideals (note that any left amenable semigroup has the latter property).

(d) S has finite intersection property for left ideals and the factor
semigroup S|(~) is infinite, where (~) is the two-sided stable equivalence
relation defined by a(-)b if and only if ca = ¢b for some cc S (an
equivalence relation E on S is two-sided stable if aFEb implies acEbc
and caFeb for all ce S).

In fact, we only need to show that the semigroups listed in (a),
(b), (¢} and (d) have proper left thick subsets. (a) If a,b,ceS are
such that a = b and ac = be, then Sc is a proper left thick subset in
S. (b) It follows from Remark 2 (with the discrete topology) that
for any finite subset ¢ & S, S — ¢ is left thick. (c) We may assume
that S is not cancellative (for otherwise (b) shows that S has a proper
left thick subset); then S has either a proper left ideal or a proper
right ideal, which must be left thick (Remark 1(c)). (d) The factor
semigroup S/(~) if left cancellative ([4], p. 372). It follows from (b)
that S|(~) has a proper left thick subset A. If A = {s; 5§ A}, where
§ denotes the homomorphic image of s in S/(~), then A is a proper
left thick subset in S.

Examples of semigroups S for which the only ELA subalgebra of
m(S) is the algebra of constant functions include all semigroups of
the form E’ x G’ where E’ is a left zero semigroup (i.e., a-b=a
for all a, bc E’) and G is a finite right cancellative semigroup as the
following proposition shows:

PROPOSITION 1. The following conditions concerning a semigroup
S are equivalent:

(@) S is right cancellative and has no proper left thick subset,

(b) S has an idempotent and has no proper left thick subset.

(¢) S is the direct product E X G of a finite group G and a
left zero semigroup E.
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(d) S s the direct product E' x G' of the finite right cancella-
tive semigroup G’ and a left zero semigroup E’.

Proof. (a) implies (b) follows from theorem 1.2.7 in [13] (p. 38).
If (b) holds, the same theorem in [13] shows that S is the direct
product E x G of a group G and a left zero semigroup E. G is finite,
for otherwise G has a proper left thick subset T' (Remark 3(b)) which
implies that S has a proper left thick subset E x T. (c) implies (d)
is clear. Finally if (d) holds, then as readily checked, S is right
cancellative. Finally if K is a left thick subset in S, ¢te E’ is arbi-
trary, there exists (¢, g,)€ E’ x G’ such that {(¢tt, 99,);9€G} =
{(t, 9); g€ G} = K. Consequently, K = S.

3. A characterization theorem. Mitchell ([9], Th. 1) shows
that a semigroup S is ELA if and only if for each finite collection of
subsets E; = S, % =1, ---, n such that S = Uy, E;, it follows that at
least one of the subsets E; is left thick in S. We show in this sec-
tion that Mitchell’s result can be sharpened and generalized to certain
subalgebras of m(S). Our proof is completely different from that of
Mitchell [9].

THEOREM 2. For any semigroup S, and 7 an algebra of sub-
sets of S such that s7'Ee 7 for all seS and Ee 7, the following
conditions are equivalent:

(a) m(7,S) is ELA.

(b) For each finite collection {E, ---, E,} of disjoint sets from
7 with unton S, at least one of K, is left thick.

Proof. (a)=(b) Let ¢ be a multiplicative LIM on m(7, S),
then 1 = o(S) = 3\, p(E;). Hence @(E;) >0 for some ¢, which im-
plies p(s™'E;) = p(E;) = 1 for all se S, since ¢ is multiplicative. Con-
sequently, the family {s™'E;; s S} has finite intersection property,
and hence E; is left thick.

(b) = (a) Let .7 be the set each of whose elements is a finite
collection {E, ---, E,} of disjoint sets in .7~ with union S. Let .&#
be ordered by defining P, < P, to mean that each set in P, is the
union of sets in P,, P,, P,e &2 It is easy to see that < renders .
into a directed set. For each Ee 7, let K; = {p e BS; p(s'E) = p(K)
for all seS}. K, is a nonempty and closed subset of BS, and the
family {K;; Ec€. 7"} has the finite intersection property. In fact, if
E,..-,E,c¢ 7, let P,={E;,,S— E}e.c” and choose P,c.&” such
that P, = P, for each 1 <7 <n. By assumption, there exists F' in

P, such that F'is left thick. Let ¢, € 8BS such that ¢(s™'F') = @(F') =1
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for all se S (Lemma 3). If FE& FE, then s'F & s'E; for all se 8.
Hence @ (s7'E;) = @py(E;) =1 for all seS. If F,&S — E, then
P(s™H(S — E;)) = p(S — K;) = 1 for all se S. Consequently, g(s™F;) =
@o(E;) = 0 for all se S. Hence ¢, € N, Ky. If pez..-Ky (which
is nonempty by compactness of 8S), then @(s™E) = ¢(E) for all se S
and Ee¢ 77 Consequently, @ is a multiplicative LIM on m(7; S)
(Lemma 1).

LEMMA 4. A semigroup S is ELA if and only if for each subset
E S S, there exists a mean p, on m(S) such that py(sE) =
te(EYe{0,1} for all seS.

Proof. If ¢ is a multiplicative LIM on m(S), then for any subset
E S S, p(E) is either 0 or 1. To see the converse, for each F & S,
let K; = {peBS; p(s'E) = p(F) for all se S}. Then K, is nonempty
since if pz(s7'E) = p,(E) =1 for all se S, then yy,(s"ENE)=1 for
all se S and hence the family {s™'E N E:sc S} has finite intersection
property. Let pe,.ss'E N K, then p(sE) = p(E) = 1 for all se S.
If  pu(s'E)=p(E)=0 for all seS, then py(s(S— E))=
#:(S — E)=1 for all seS. Hence as above, there exists eSS
such that @(s™(S — E)) = @(S — F) =1 for all seS, or p(sE) =
@(E) =0 for all s€S. In both cases, K, # ¢. Furthermore, .5 =
{Ky; £ < S} is a family of nonempty w*-compact subset of B8S. If
we can show that 9% has the finite intersection property, then any
@ € NresKr satisfies @p(s™'E) = p(F) for all se€S and ES S. By
Lemma 1, ¢ is even a LIM on m(S). To this end, let & be a family
of subsets of S such that Nz.. K, #* @, and let E, < S. Pick
P E€Nee-Krand e K, where F = {se S; p(s'E,) = 1}. Define 4 €8S
by v(f) = p(h), where h(s) = @(,f) forall s€ S. Then v € (Nyc-Kz) N Ky,
since Y (E) = p(h) = p(,h) = y(@E) for all aeS, where &i(s) =
P(sTE) = p(s™(a'E)) = h(as) for all a, s S, and

W(E) = ((F) = p(a™'F) = (a'E,) for all ae S .
This finishes the proof.

Lemma 4 yields the following new characterization theorem for
the class of ELA semigroups:

THEOREM 3. A semigroup S is ELA if and only if (*) for each
subset E = S, either E is left thick, or S — E s left thick.

Proof. Necessity follows from Theorem 2 (a) = (b). Conversely
if (*) holds, it follows from Lemma 3 that for each E & S, there
exists a mean ¢ on m(S) such that p(s"'E) = pu(E) =1 for all seS
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if F is left thick, or p(s™'E) = p(E) = 0 if S — E is left thick. Con-
sequently, S is ELA by Lemma 4.

REMARK. Note that condition (*) in Theorem 3 is formally weaker
than condition (b) and (¢) in [9], Theorem 1.

The author would like to thank the referee for his many stimulat-
ing suggestions leading to the addition of Proposition 1 and a simpler
proof of Theorem 1.

The author is most indebted to Professor Granirer for his valuable
suggestions and encouragement during the preparation of the thesis.
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