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1.1. We consider the Cesaro summability, for integral
orders, of the series

(l.i) Σ * > * "

In this paper we establish equivalence theorems for the
series (1.1) which are valid for a substantial class of sequences
dv including e~v and v~s. Results of this character, but not
overlapping with those in this paper, were given by Hardy
and Little wood and by Andersen. Andersen's result was ex-
tended by Bosanquet and Chow, and further extended by
Bosanquet.

Notation. 1.2. We write A°n = An = a0 + αx + + an9

At = At1 + At1 + + A*-1

and we get the identities: See Hardy [8].

(1.2) AΪ = ±B£zlAu,

(1.3) A* = £ 5*_α,,

where

(1.4) B U = (n ~ I+ k)

Et = At when a0 = 1, an = 0, for n > 0, i.e., when An = 1, for all n.
Hence

If

(1.6) AIL-+A, when w—oo,

or equivalently if

(1.7) ^ — A, when n — oo,

then we say that Σ^=o ̂ w is summable (C, k) to sum A and we write
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(1.8) ±an = A(C,k).

1.3. Statement of lemma and identiy. We write

Adn = dn- dn_» Akun = AΔk-γun (k ^ 2)

and Λ°un = un.
We shall use the following well-known identity:

(1.9)

LEMMA

(1.10)

whenever

(1.11)

ΛW.) = Σ(ί)^*-'*.-..

A. 1^ order ί/̂ αί

ί» = Σ Cm>nSn -> S (m -> oo) ,

it is necessary and sufficient that

( 1 . 1 2 ) ( i )

where H is

(1.13) ( i i )

J \J I WbKsfu ΐ(/y

(1.14) (iii)

Σ C M < £Γ ,

independent of m;

C...-0,

when m —>• oo

£ CTO,TC — 1, lϋ/tew m — oo .

( m = 0 , 1 , 2 , •••)

(W-» oo) ,

Lemma A is mentioned by Hardy [8, Th. 2], which is due to
Toeplitz [12]. Toeplitz considers only triangular transformations, in
which Cm>n = 0 for n > m. The extension to general transformations
was made by Steinhaus [11].

2Φ Statement and proof of the theorem*

THEOREM (the cases k = 1, 2, •)• Suppose that dn > /or w >̂ 0,

(2.1) ( i )

(2.2) (ii)
x/ = m + fc

(J operating on m) .

necessary and sufficient conditions for



THEOREMS ON CESARO SUMMABILITY OF SERIES 387

CO

(2.3) ( I ) Σ aΛv to be summable (C, k) to S

are that
oo

(2.4) (II) — Σ&Λ^+i should be summable (C, k) to S
i/=0

and

<2.5) (III) Sndn+ι = o(l) (C, i ) α s w ~ > o o ,

(2.6) S. = Σ α y .

Proof. We have

(2.7) Σ M . = SΛdΛ+1 - Σ SUdv+1

i.e., Cn = Fn-Gn,

and hence

(2.8) Ck

n = Fk

n~Gk

n.

The sufficiency follows immediately from (2.8).
Necessity. We are given that

(2.9) CtlBt ->S as n-+oo ,

and it will be enough to prove that

(2.10) ~GkJBk

n^S as tι-> oo .

From (2.7) we have

£>nzjan+ί

(2 11)

= dn(dn+ιΛGn - G

dnan+1

Thus

(2.12) - ^ = Σ ^Γ
0 ^

SO
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and hence

(2.13)

-Gl = ± Bizϊd^ ± CmJ(l/dm+1)
0

= ±(-l)hCUkU{lldm+k+ι)
m=0 L v=

It follows that

— V T Ύ

Tm =

(2.14)

where

(2.15)

and

(2.16)

Hence

(2.17) ( i )

by hypothesis (ii).
Now, from (2.16), we have, for each m

(2.18)

+ a{J(l/dm+1)Q Z ^

various constants)

using the identity (1.9).
Then from (2.18) it follows that for each m
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(2.19) yntm = An,m + θ(-) = An,m + 0(1), as n — <*> ,

where

(2.20) I Λ,m I < ̂ B ξ

for each m, as n~+co, by hypothesis (i)
Hence it follows from (2.19)-(2.20) that

(2.21) (ii) %*,m—>0 for each m, as n—> oo .

Let us take

α0 = 1, av = 0, for v ^ 1, and d0 = 1

in

(2.22) Cn - Σ &Λ

Then we have, for n ^ 0, Cn = 1, and hence

\Δ.Δo) L/n/jDn = 1

Next, since Cv = 1, cZ0 = 1, we obtain from (2.12)

and hence

(2.24) -Gl\Bl = 1 - dUJBl - l a s ^ - o o ,

by hypothesis (i).

But this implies, from (2 14)-(2.15), that

(2.25) (iii) -GlIBl = Σ y..» — 1 as ^ — cx3 .
m=0

It follows that conditions (i), (ii) and (iii) of Lemma A are satis-
fied, and hence

(2.26) -GkJBk

n - » S as n -> oo .

Note. Hypotheses (i) αwc? (ii) of the Theorem are necessary. For
suppose that —GIIB*-+S as n-+°o9 whenever CHBI-+S as w—>oo.

Then from (2.14)-(2.16), condition (i) of Lemma A must hold, but
this implies (2.17) and hence hypothesis (ii) of Theorem 2.

Next, let us choose Cn so that (2.23) holds. Then (2.3) holds,
with S = 1, and hence (2.24) holds. Hence it follows that dk

n+JBk

n =
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o(l) as n —» oo, and this implies hypothesis (i) of the theorem.
Further the summability (C, k) of (2.4) can be improved to the

summability (C, k — 1), by the following Lemma.

LEMMA B. // dn is monotonically decreasing and

(2.27) ( i ) n*J'dΛ+ι = O(dn+ι) ,

(2.28) (ii) njJHn+1 = O(tn+1) ,

for j — 1, 2, , fc + 1, where

(2.29) tΛ = 1 R ,

(2.30) (iii) Sndn+1 = o(l) (C, ft) =- nSnJdn+1 = o(l) (C, ft) .

Proof. We have

(2.31) fk - S X + 1 = o(l) (C, fc) .

We will prove that

(2.32) Hngn = o(l) (C, k) ,

where

(2.33) gn = Vήk±L = nJdn+1tn+ί .

By a theorem of Bosanquet [6, Th. 1], which is an extension of
another theorem of Bosanquet [4> Lemma 1], it will be enough to
prove that

(2.34)

and

(2.35)

Now

(2.36)

by (2.44).
Next,

(2.37) Δ

Δ>gn = O(ir>) ,

n

gn = nΔdn+ιtn+ι ^

using the identity (1.9),

-ιgn =axn\Δdn+1 \Δk-%+1

+ al\Adn^\ \Δk~%+1

^ Kin"-1 .

= 0(71) .

we have

+ ••• +

3 = O,l,--fc-l,

UK,

ίΎ Ύi 1 Akf1 \t

xy/C-2 1 Λk-lJ 1 f
Oί \ Δ an + γ 1 6?ι_1_fc4-2

(a various constant)
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The other conditions in (2.34) are easily obtained similarly, but
it is well known that the inequalities for j = 0 and k — 1 imply those
for j = 1, 2, , k — 2: See Hardy and Littlewood [9].

Next we have

IΔ kg n\^a,n\Δd n + 1 \ \ΔHn+1 \ + ... +akn\

(2.38) + α11 Δdn+111 Δk~Hn+11 + + a^ \ Δkdn+X \ tn+1_k+1

^ K/nk .

Hence

(2.39) Σ ^ I Δk9» I ^ Σ ^ < & ,

and this completes the proof the lemma.

Next we will consider the case k — 0.
Now we have

nSnΔdn+ι ^ Kdn+1Sn

by (2.27), and since

(2.40) Sndn+1 = o(l) as n -> oo ,

it follows that

(2.41) nSnΔdn+ι = o(l) as n —> oo .

Next since

(2.42) Σ SJdv+ι
υ=0

is convergent, it follows from the definition that (2.42) is summable

In conclusion I wish to acknowledge my debts of gratitude to
Prof. L. S. Bosanquet for suggesting the problem to me and for his
valuable guidance and comments throughout the course of my work.
I also appreciate several comments made by Mr. M. C. Austin and
wish to record my appreciation of several suggestions for improve-
ment made by Prof. D. Borwein.
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