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The purpose of this paper is to describe, under suitable
conditions which are always satisfied at characteristic 0, a
close relationship between Cartan subalgebras of a Lie algebra
£f and Cartan subalgebras of an ideal <&?' of £f. Under
the conditions referred to, a mapping α* from the set of Cartan
subalgebras of Sf onto the set of Cartan subalgebras of JS^'
is described and the fibres of α* are determined.

The main tools for the paper are N. Jacobson's generalization of
EngeFs Theorem [2; p. 33], and Theorem 5 of [4] which deals with
Cartan subalgebras of the Fitting zero space of a derivation of a Lie
algebra ^ In addition, general material on Lie algebras, to be found
in [2], [3], is presupposed.

Throughout this paper, Lie algebras and vector spaces are finite
dimensional.

If V is an ^/"-module where ^V~ is a nilpotent Lie algebra over
the field F, the null and one components of V are denoted
V*{^") respectively [cf. 2; pp. 37-43] and, for a a function from
into F, Va(^Γ) = {ve V\v(I - a(x))dimV = 0 for all xe^r).

If V is a vector space (respectively Lie algebra, respectively
module for a Lie algebra, over F, then the extension V§§FK of V to
an extension field K of F is denoted Vκ.

2. Cartan subalgebras of a Lie algebra and its ideals* Throug-
hout this section, Sf denotes a Lie algebra over an arbitrary field F.
The characteristic of F is denoted p, p = 0 being permissible. Let
&" be an ideal of £f and let the canonical short exact sequence
determined by ^ £f' be denoted

o — > jδ^' -^ j^f -£-> JF = &ι&9 — > o ,

where a is the inclusion mapping. The set of Cartan subalgebras of
Sf is denoted Cart £?. For ^f e Cart j ^ (J^')o(ad (^r Π £f')) is
denoted a*(£έf). Our main objective is to prove the following
theorem.

THEOREM. Suppose that either p = 0, or p Φ 0 and (a,d^,^f')p c
and (ad^£f)p c ad_^^ Then α*(Cart £f) = Cart &» and
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a*-\3ί?f) = Cart ^ (ad se?') for Sίf' e Cart &>'.

We defer the proof for the moment, since it is convenient to have
the following lemma at our disposal.

LEMMA. Let V be a vector space over F, Jίf a Lie subalgebra
of HonvF. If the characteristic of F is p Φ 0, suppose that £f is
closed under p-th powers. Let Λr be a nilpotent subalgebra of
HornpF which normalizes J*f. Suppose that ^ ( a d <̂//~) consists of
nilpotent transformations of V. Then £>? consists of nilpotent trans-
formations of V.

Proof of lemma. Since ^ ( a d ^ / O consists of nilpotent trans-
formations and is closed under brackets, J*?0(a.d^K)K = (-5fχ)o(ad ^ίrκ)
consists of nilpotent transformations where K is the algebraic closure
of F. Moreover, if the characteristic of F is p Φ 0, £fκ is closed
under p-th powers [cf. 2; p. 190]. Thus, we may assume without
loss of generality that F is algebraically closed.

Now ^ = Σ ^ ( a d ^V) and V = Σ Vβ(^T). For all α, β, we
have Vβ(^)£f?

a(ad^r)czVβ+a.aΛ(^r) [cf. 2; p. 63]. Thus, if the
characteristic of F is 0, i^(ad ^/K*) consists of nilpotent transforma-
tions for all α: for α — 0 by hypothesis and for α Φ 0 by the above
observation. Suppose next that the characteristic of F is p Φ 0. Let
x e Lα(ad ^V). Then xp e ^ Π (Homi,F)0(ad ΛT) - ^?(ad ^ f ) , for if
t is the semi-simple part of an element y of ^V\ t adx — — α(τ/)# so
that 0 = ί(adx)2 = . . . = ί(adx)p = [t, xp]. Thus, xp, hence x, is nil-
potent. Thus, the .S^(ad ^f^) again consist of nilpotent transforma-
tions for all α. We now can apply [2; p. 33] to the weakly closed
set (J =S (̂ad *yK) of nilpotent transformations. This implies that the
Lie algebra generated by U =S (̂ad <yV"), namely Jΐf itself, consists of
nilpotent transformations.

Proof of theorem. We first show that α:*(Cart^)c Cart £f'. Thus,
let, £ί? e Cart Sf. Then ^ n ^ ' = ^ ( a d 2lf) Π -Sf' = (^")o(ad J^7).
Now _/f = ad 3ίf\<z>, is a nilpotent Lie algebra of derivations of £f'
and ^T7 Π £f' is trivially a Cartan subalgebra of {^ff\(^Γ) = ££? Π =S '̂.
Thus, Theorem 5 of [4] applies and shows that ( j^ ')o(ad(^ n £?')) =
α*(£ίf) is a Cartan subalgebra of =5^'.

Next suppose that ^ff e Cart .Sf' and that ^ r e Cart ^ ( a d
Since ^?(ad ^^') normalizes jS^(ad 3ίf') ft £f' = (Sf'UvA SIT) =
we have:

(1) ^Γ normalizes

In view of (1), we have ser = &% © 3if» where ^gf = (^T')0(ad
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and 3(?ί = (<^r')*(ad ΛT). Note that ^f,f = 3ί?' Π ̂  since ^ r G
Cart ^ ( a d 31?') and ^ T ' c j^(ad JT') . Let F = (J^')o(ad ^ ' ) Since
^gf c 31?' and Jgf c ^ F is stable under ad 3!?' and ad ^ [cf.
2; p. 58]. Now we prepare the way for applying the above lemma
to (F, ad £έ?'\v, vA^V\v). Thus, note that ad <%?% is a subalgebra
of Hom^F normalized by the nilpotent subalgebra aA*sV\v and that,
if the characteristic of F is p Φ 0, ad 3ί?'\v is closed under p-th
powers. (In fact, ad^,^" ' is closed under p-th powers since a d ^ , ^ '
is closed under p-th powers and since 3(?' is a Cartan subalgebra of
&"\ for x G 3ί?\ (ad α?)p = ad y for some 2/ G £?', and 7/ e ^g '̂, since

=) ̂ T (ad a;)23 = \2t?, y]). Moreover

(ad Jr'|r)o(ad (ad yκ>\v)) = ad

and ad Sί?^\v consists of nilpotent transformations by the definition of
F. Thus, by the lemma, ad έ%ff\v consists of nilpotent transforma-
tions. Thus, (J^')o(ad 3!?*') = ((J^')o(ad ^T r) = 31?'. We therefore
have:

( 2 ) 3ί?' = (£f'\(*A (31?' Π

We show that (2) implies 31?' = (.S^Ooίad (31? Π £?)) for substable
<§ί? G Cart . ^ Thus, let ^ T = ^ (ad ^ T ) . Then ^ T G Cart = ^ , by
Theorem 5 of [4], since Λ" is a Cartan subalgebra of
Since 3ί?f Π ̂ T c «5f' Π 3f?, (2) implies that

' Π ̂ T)) c (^")o(ad (^T' Π - ^ ) )

Thus, since ^*(^g^) G Cart ^', by the preceding paragraph, a*(3(?) =
^g '̂, by the maximal nilpotency of Cartan subalgebras. Thus, we
have:

( 3 ) J2^(ad Λr) G Cart &> and

We have α*(Cart £f) c Cart ^?\ from the first paragraph. Thus,
it follows from (3) that α*(Cart £f) = Cart £f'. Note, however, that
the existence of Λr e Cart ^f0 (ad 3ί?') is used for this conclusion.
But ad ώ^(ad ^g '̂) is a linear Lie p-algebra for p Φ 0, as the null
component of the linear Lie p-algebra ad £^ with respect to the
subalgebra ad 31?'. Thus, ad ^ ( a d 31?') has a Cartan subalgebra,
by [3; p. 121], so that ^ ( a d 3%") has a Cartan subalgebra.

Finally, we suppose that ££?' e Cart £f'. Let 3ίf e a*~\3ί?').
Then ^ T c ^ ( a d (^T Π £f')), so that ^ T normalizes

n J^ ')) n

Thus, ^ c ^ ( a d ^ ' ) , so that ^ T G Cart j^(ad 3ί?f). Suppose,
conversely, that Λ" e Cart ^ ( a d 3ί?'). By (3), ^ ( a d ^ r ) G Cart .g^
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and α*(j^(ad ^K)) = £ίff. Thus, by first part of this paragraph,
ι c ^ ( a d £(?% But then

since ^ e Cart j^(ad &?') [cf. 2; p. 57-58]. Thus, ^V is a Cartan
subalgebra of ^ by [2; p. 57-58], Now

by (3), and _xT e a : * " 1 ^ ' ) . Thus, α * " 1 ^ ' ) = Cart j^(ad

We now turn to two related results. The first is concerned with
the fibres of <x*. The second is concerned with the relations between
the sequences

Cart &» £—

Cart β-\]%f)

where i is inclusion, £ίf
β* is defined by βΛ ̂ ) —

Cart £f <-̂ -

— -̂> Cart ^

G Cart j ^ , J

/S(w^) for ,

- Cart ^ ( a d JT1')

57 -A-> Cart ^

^ G Cart £f.
= β(<βέ?) and

PROPOSITION 1. Let the hypothesis be as in the theorem, and let
e Cart ^f, 3ίff e Cart £f*. Then the following conditions are

equivalent.
(1) 2ί?' = a*(β^);
(2) ^f normalizes
(3)

Proof. If 3ίf' = a*(3^), then 3ί? c ^?(ad (=^ r Π &?)) and
normalizes ^ T ' = ^ ( a d ί ^ 7 ' Π ̂ ^)) Π -£*'. Thus, (1) implies (2). If

normalizes Jg^', then Si? c ^ ( a d ^g '̂) and

Thus, (2) implies (3). Suppose, finally, that <%̂  Π -2s7' c ^ ' . Then
J T ' = (=^')o(ad ̂ T') c (^^Ooίadί^^7 n =S '̂)) = ^ * ( ^ ί 7 ) . But α*(^^) e
Cart =^ ' and £έf' is, a Cartan subalgebra of ^ ' , maximal nilpotent
in £f\ Thus, ^ T ' = =^(^g^)*(Jr). Thus (3) implies (1), and the
conditions (l)-(3) are equivalent.

PROPOSITION 2. Let the hypothesis be as in the theorem. Let
^f e Cart £f, J T ' = α*( ί^

7), ]%f = β(^f). Then ^f normalizes
Cart £f contains Cart (̂ g^ + 3lf'\ Cart ^ ( a d ^T') and Cart β-
and (Cart j^(ad ^T')) Π Cart βr\sF) = Cart (^T +

Proof. £%f normalizes 3(?', by Proposition 1. Since
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') n β

Thus, it suffices to show that Cart =2̂  contains Cart
Cart β-\3?) and Cart ( ^ + ^ ' ) The first two sets are contained
in Cart ^ - Cart j ^ (ad £έ?') by the theorem and Cart β-\3?) by
[1]. Thus, it remains only to show that

Cart (JT7 + £(f') c Cart jS^(ad £%?') .

But βέf" = ^ ( a d JT') n =^' is an ideal of j^(ad Sίf') and 3ίf e
Cart ^ ( a d ^T'). Thus, Cart (^T + , ^ 0 c Cart <^(ad JT'), by [1],
since ^tf + &?' is the preimage in ^ ( a d 3ίf') of the Cartan subalgebra

of
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