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Let A be the category of Abelian groups, B the class of
bounded Abelian groups. It is shown that if G and H are
totally prqjegtive p-groups’, then G =~ H in the quotient
category A/B if and only if there exists an integer £ =0
such that for all ordinals « and all integers » = 0,

r+k . r+2k . r+k i r+2k .
Z}ch(a +7J) = Zofa(a + ) and Zkfg(aﬂ) = > fela+173).
= 9= = =0

This extends a similar result of R. J. Ensey for direct sums
of countable reduced p-groups. It is also noted that if G and
H are totally projective p-groups, then G is quasi-isomorphic
to H if and only if there exists an integer %t = 0 such that
for all integers n =0 and r =0,

r+k . r+2k N
}:} Jeln + 7) = 25 Suln + 3)
i=k =

and

Z‘,Ifa(n+.7)< Zfa(n+2) and felo) = fu(a)

for all « = w. This extends a similar result of R. S. Pierce
and R. A. Beaumont for direct sums of countable reduced
p-groups,

Preliminaries. Let A be the category of groups and B the Serre
class of bounded groups. Then A/B is the quotient category as defined
by Grothendieck [5]. The objects A/B are the objects of A.

Homj,s (G, H) = lim Hom (¢, H/H"),

—
(G’,H")eD

where D = {G', H' |G’ =G, H S H;G/G', H' e B). D is directed by
(G',H) < (G",H") if and only if G"S G and H'S H"”. For a
thorough discussion of the category fi/f?, the reader should see either
Ensey [4] or E. A. Walker [9]. From Walker’s results, it follows
that G = H in A/B if and only if there exist subgroups S and A of
G, and T and B of H such that S/A = T/B and G/S, H/T, A, and
B are bounded. Two groups G and H are quasi-isomorphic if there
exist isomorphic subgroups S and T of G and H respectively such
that G/S and H/T are bounded. Then -clearly, quasi-isomorphism
implies isomorphism in fi/ﬁ, and for torsion-free groups, the converse
also holds.

1 From here on, the word group is used to mean Abelian group.
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The following two conditions of Beaumont and Pierce [1] are

used in the next section:
(I) there exists an integer k# = 0 such that for all integers

n=0and r=0

S foln+9) S S Fuln+9) and 3 fuln+9) S5 foln + ) -

(L) fela) = fy(a) for all a = w.
Here G and H are groups and the notation f(8) denotes the 5™ Ulm
mvariant of G.

Ensey [4] showed that if G and H are direct sums of countable
reduced p-groups, then G = H in fi/]? if and only if

(IIT) there exists an integer % = 0 such that for all ordinals
« and integers r = 0

r+k

2 fola+ ) = :i:’: fula + j) and 12,]: fula +3) < ;_‘:2 fola + 7).

In this paper, Ensey’s result is extended to the class of totally
projective groups. This class may be described as the smallest class
P of p-groups containing a cyclic group of order p and satisfying the
following two conditions:

(a) G;eP if and only if 3,.,G, e P.

(b) For any ordinal @, Ge P if and only if p°G and G/p°G are
in P. Full use is made of the fact that P. Hill [7] has recently
proved that Ulm’s Theorem holds for totally projective groups and
that he has shown that there exists a totally projective group G
with Ulm invariants fs(«) if and only if

JeB) = > fol6)

wa+n<<w(at+l =Zw(a+1l)

for each n» < w and each «a < (G), where 7(G) denotes the type of
G, defined below. These two results are referred to as “Hill’s
Uniqueness Theorem” and “Hill’s Existence Theorem,” respectively.

It should be noted that the results of this paper follow equally
well from the uniqueness and existence theorems of P. Crawley and
A. Hales [3].

All groups considered are reduced p-groups for a fixed prime p.
7(G) denotes the type of G, the smallest ordinal z such that G* = 0;
G* = p°*G; G, = G*/G**', the a™ Ulm factor of G. The notation
d.s.c., adopted from R. Nunke [8], stands for a direct sum of countable

reduced p-groups.

2. Ulm’s Theorem in /I/B. The following theorem is an ex-
tension of a theorem of Beaumont and Pierce [1] from the class of
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d.s.c. groups to the class of totally projective groups, which follows
immediately from results of Nunke [8] and Hill [6], [7].

THEOREM 1. Let G and H be totally projective. Then G 1is
quasi-isomorphic to H if and only if G and H satisfy conditions (I)
and (II).

Proof. It was shown in [1] that if G and H are arbitrary
p-groups, then (I) and (II) hold if G is quasi-isomorphic to H. In
[6], Hill proved that if G and H are p-groups such that G/p“G and
H/p°H are direct sums of cyclic groups then (I) and the condition
that p*G = p“H are necessary and sufficient conditions in order that
G is quasi-isomorphic to H. If G and H are totally projective, then
G/p“G and H/p“H are direct sums of cyclic groups and since (II) and
Hill’s Uniqueness Theorem imply p“G = p“H, the theorem is proved.

DEFINITION. (Emnsey, [4].) Let {G.)ee; and {H,}..; be two families
of groups indexed by the same set I. These families are uniformly
quasi-isomorphic if there exists an integer £ = 0 and for each acl,
subgroups S, & G,, T.< H, such that »*G, <& S,, p»*H,= T,, and
S, =T,

The following lemma relates this concept to that of isomorphism
in A/B for totally projective groups.

ALEMMA 2. Let G and H be totally projective. If G =H 1in
A/B, then the corresponding Ulm factors of G and H are uniformly
quasi-isomorphic.

Proof. Ensey [4] has shown that for any reduced p-groups G
and H such that G = H in A/B, (I) holds for G, and H, with the k&
of (I) the same for all . Since G, = p*°G/p“**VG, and p°*G is
totally projective, it follows that G, and H, are direct sums of
cyclic groups. This being the case, Ensey [4] has shown that the
corresponding Ulm factors of G and H are uniformly quasi-isomorphiec.

That the converse of Lemma 2 also holds is the content of the
next two lemmas and the succeeding theorem. The notation fr(G)
is used to denote the final rank of G. Recall that if the rank of G
is denoted 7(G), then by definition, fr(G) = min,, r(p"G). All re-
ferences to Ensey refer to [4].

LEMMA 3. Let G be totally projective and ©(G) =7. For a <7,
let G, =S, P T, where fr(T,) = fr(G.). Let H be totally projective
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such that for all a < T, AHa = p*S, @ T, for some fized integer
k=0. Then G = H in A/B.

Proof. Since Hill’s Existence Theorem is used several times in
this proof, it seems advisable to translate his condition from the
setting of Ulm invariants to that of Ulm factors, their ranks and
final ranks. The Ulm invariants of G, are the Ulm invariants
of p*G for n<w. But fre(n)=fe(wa +n). Thus f; (n) =
Sfel@a +mn), n < ®. Therefore 7(G,) = Siagscotasrn fo(B) and fr(G,) =
min S fe(B). Hence Hill’s condition can be written fr(G,) =

n<w wat+tns8<w(a+l)

Sa<pee (Gp). Thus such an H exists and since f»(T,) = fr(G.), T, can
be broken up in the following way: T, = Dl cs<.Gas Where fr(G,;) =
fr(G,). Again by Hill’s Existence Theorem, there exist totally pro-
jective groups {L,},.. with Ulm factors (L,); = G;, for all B < a; (L,), =
S.; and (L,); = 0 for all 8 > «. Since the class of totally projective
groups is closed under taking arbitrary direct sums, 3. .L, is totally
projective, and thus G = >\, ..L, by Hill’s Uniqueness Theorem since
they have the same Ulm factors. For all a < 7, let M, = L,/L:[p"].
Ensey has shown that for any reduced p-group G, (G/A)* = G*/A for
all 8<~v whenever A S G’. Hence p**M, = (L,/L:[p*])* = L/ Ls[p*] =
p*L%, and since L, is totally projective, p“*M, is totally projective.
Using the same result of Ensey’s, M,/p**M, = (L,/L&[0*])/(L2/ L[ p*]) =
L,/ L: and hence M,/p°*M, is totally projective. Therefore M, is
totally projective. Ensey has also shown that for any reduced p-group
G, ordinal « and integer k= 0, G/G*[p*] has Ulm factors G, for
B # a and p*G¢/G*+* for B = a. Thus M, has Ulm factors (L,); for
B # a and (M,), = p*L%/L™ = p*(L,), = p*S,. Let M = >\,..M, and
A= Y..Lip*]. Then M is totally projective and since G = > ... L,
G/A = M. Ensey has shown that K = L in A/B if and only if there
exists a bounded subgroup B & L such that K is quasi-isomorphic to
L/B. Therefore G =M in A/B since A is bounded. But since M
has the same Ulm factors as H, M = H in ﬁ/f? by Hill’s Uniqueness
Theorem. Therefore G = H in A/B.

LEMMA 4. Let G be totally projective, ©(G) = 7, and for a < 7,
let G, =S.PD T, Let H be totally projective such that for all
a <7, H =S, P T, for some fixed integer k=0. Then G = H
in A/B.

Proof. Such an H exists by Hill’s Existence Theorem. Let
I ={a <t|fr(T,) = fr(G)}, L={a<c|fr(T.) <fr(G.)}. For acl,
fr(S.) = fr(G,). Thus, let S, = S,DS, where fr(S,) = fr(Sy) = fr(S.).
Let H' be totally projective with the following Ulm factors: H, =
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pS, P T, for all we I, H, = p*S, P S, P T, for all «el,. Such an
H' exists by Hill’s Existence Theorem. By Lemma 3, G = H' in
A/B and H' = H in A/B. Therefore G = H in A/B.

R ATHEOREM 5. Let G and H be totally projective. Then G = H in
A/B if and only if the corresponding Ulm factors of G and H are
uniformly quasi-isomorphic.

Proof. Suppose the corresponding Ulm factors of G and H are
uniformly quasi-isomorphic. Without loss of generality, it can be
assumed that ©(G) =t(H)=7. Suppose o(G)=7, t(H)=7 + 1.
Since H, is quasi-isomorphic to G. =0, H, is bounded and thus
7(H) = 7 + 1. Since H. is bounded, G = H in A/B if and only if
G = H/H, in /I/E. H/H. has type 7 and is totally projective by the
description given previously. Moreover, the corresponding Ulm factors
of G and H/H, are uniformly quasi-isomorphic since the Ulm factors
of H and H/H. agree except at the z* place. By uniform quasi-
isomorphism, there exists an integer %k = 0 and for each « < 7, sub-
groups S, & G., T, S H, such that pG, & S,, »H, & T,, and S, =
T.. Thus for each @ < 7, (I) holds for G, and H,. D. Bertholf [2]
has shown that if this is the case, then for all a<7, G, =
Ga,o @ ot @ Ga,zk and -Hoz = Ha,o EB st @ Hoz,zk where kaa,O = Ha,oy
pk—lGa,l = Hzx,l! ] Ga,k = Mo, Ga,k-H = p{{a,}ﬂr °t Ga,2k = pkHa,2k- By
applying Lemma 4.2k times, G = H in A/B is verified. The converse
is Lemma 2.

THEOREM 6. Let G and H be totally projective. Then G = H
in A/B if and only if (III) is satisfied.

Proof. Suppose (III) holds. Then there exists a & = 0 such that
for each « and integers » = 0 and n = 0,

r+k

S folwa +n+ ) =S fuloa + 0+ )

r+2k

= Z:)fHa(n +3),

2 Fasn + 5)

and similarly, 377Ffr (n + 5) £ 3555 fo (0 + j). Therefore G, and
H, satisfy (I) for all o« and a fixed k. If this is the case, Ensey has
shown that the corresponding Ulm factors of G and H are uniformly
quasi-isomorphic. Therefore, by Theorem 5, G = H in A/B. Ensey
has shown that the converse is true for arbitrary reduced p-groups.

COROLLARY 7. Let G and H be totally projective, a any ordinal.
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Then G = H in A/B if and only if p°G = p°H in A/B and G/p°G =
H/p*H in A/B.

Proof. Ensey has shown that if G and H are any reduced
p-groups and if G = H in A/B, then p°G = p*H in A/B and G/p°G =
H/ij—I in A/B. Now suppose p°G = p°H in ﬁ/ﬁ and G/p°G = H/p*H
in A/B. Without loss of generality, it can be assumed that « is a
limit ordinal. If not, then « = 8 + n where 8 is a limit. But if
p°G = p°H in A/B, then p’G = p’H in A/B, and if G/p*G = H/p"H in
A/B, then G/p*G = H/pPH in fi/ﬁ. This follows since « and £ differ
by a finite ordinal and hence »°G/p*G is bounded. Now assuming «
is a limit ordinal, the Ulm sequence of G is precisely that of G/p*G
followed by that of p*G; that is, the Ulm sequence of G is f/,e,(0),
SeivaD)s =+ fo10a6(B), «++ for all 8 < a followed by f,a4(0), foaa(l), - -.
Now p°G, p*H, G/p*G, and H/p*H are all totally projective, so by
Theorem 6, there exist &, = 0 and %, = 0 such that the inequalities
in condition (III) hold for p*G and p*H, and G/p*G and H/p“H.
Therefore, letting k& = max (k,, k,), condition (III) holds for G and H
and hence G = H in A/B by Theorem 6.
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