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INTEGRAL DOMAINS THAT ARE NOT
EMBEDDABLE IN DIVISION RINGS

JOHN DAUNS

A class of totally ordered rings V is constructed having
the property 1 < ac V=1/ac V, but such that V cannot be
embedded in any division ring,

1. Inverses in semigroup power series rings. This note has only one
objective—to construct the above class of counterexamples (see [6]).

NotaTioN 1.1. Throughout I" will be a totally ordered cancell-
ative semigroup with identity e¢; R will denote any totally ordered
division ring. If a:I"= R is any function, then the support of «
is the set suppa = {sel'|a(s) = 0}. The set V = V(I', R) of all
functions a such that suppa satisfies the a.c.c. (ascending chain
condition) form a totally ordered abelian group. If I" is cancellative,
then under the usual power series multiplication (see [3]), V is a
totally ordered ring.

1.2. Any 1< aecV with a(s) =0 for s > ¢ may be written as
a = ae)(l — ), where 1 < a(e) and A = I{NMa)ala < e¢}. It will be
shown that

@=N"=1+r+2N+ =1+ 33" Ma(DMa(2) - - Ma(n) ,

where the finite sum 3’ is over all integers and over all distinct =n-
tuples of 7' satisfying s = a()a(2) --- a(n) with each a(i) < e; the
sum X is over all s < e. To prove that 1/ac V it suffices to establish
conditions (@) and (b) below.

(@) For each sel', there are only a finite number of n with
A(s) == 0;

(b) supp(l — N)* satisfies the a.c.c.

Assuming (a) and (b), the main theorem follows at once. By
adjoining an identity as in {8; p. 158] to the semigroup in [2] a
semigroup that actually satisfies the hypothesis in (ii) below can be
constructed.

MaIN THEOREM 1.3. If I' is a totally ordered cancellative semi-
group with identity e and R any totally ordered division ring, then
the power series ring V = V(I, R) has the following properties:

(i) 1<aeV and a(s) =0 for s >e=—1/ac V.

(i1) If in addition I’ cannot be embedded in a group, then V
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cannot be embedded in a division ring.

An already known result ([8; p. 135]) follows immediately from
1.3 ().

COROLLARY 1.4. If in addition I' is a group, then V(I', R) is a
division ring.

2. Proof of the main theorem. Assume 1.2 (a) or (b) fails.
Then a lengthy but elementary argument shows there exists a doubly
indexed matrix {a(%, j) esuppr |1l £ 1< ;1 £ 7 < n(9)} such that the
products u(z) = a(z, 1)a(z, 2) -+ - a(i, n(7)) of the rows form an infinite
properly ascending chain. Eventually a contradiction will be derived
from this. Without loss of generality assume I" < e.

DEFINITION 2.1. For any totally ordered semigroup I” with identity
¢ and any element ael” with a < e, define a semigroup by

I'(@) ={gel'|3 an integer m >0, ¢" < a} .

LemMA 2.2, With I' as above, for any a(l), ---, a(m)el with
each a(j) < e, set w = a(l)a(2) --- a(m) and define

a* = min {a(l), - -+, a(m)} .

Then I'(u) = I'(a*).

2.38. Consider a fixed subset L &1 all of whose elements satisfy
L < ¢ and where L satisfies the a.c.c., e.g., L = supp: < e. Consider
an array of elements A = ||a(%, 7)|| with {a(i, ) |1 1< 0,1 5 £
n(?)} & L, where repetitions in the a(i, 7) are allowed. Assume all
n(1) = 2. Define u(t) = u(s, A) by

(1) = u(i, 4) = at, Da(, 2) « -« a(, n(7)) .

Let 27 be the set of all such A4 = ||a(4, j)|| for which u(1) < u(2) <
eoe < u(t) < -+~ is strictly ascending at each 7. With each member
A = ||a(1, 7)|l € 2Z; we next associate three objects

{@(@)*|1 < i < o), m = m(A4), and G = G(4) .

Define a(?)* = min {a(t, J) |1 £ j < n(?)}. Note that u(l) <u@) < ---
implies that I'(a(1)*) & I'(a(2)*) & I'(a(t)*) S ---. Thus since L satisfies
the a.c.c., there is a unique smallest integer m = m(A4) such that the
semigroups G = I'(a(m)*) = I'(a(m + 1)*) = --- are all equal. The
following schematic diagram of all these quantities may be helpful.
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I'a(1)) =I'w(1)) wu(l)=a(l,a(l,2)---a(l)*---a(l, n(l))

Ia(2)*) = F(u?HZ)) w(2)=a(2, Da(2,2) - a(2)* -+ a(2, n(2))

I'a(m)*) =TI (%r(lfn)) u(m) = a(m, a(m, 2) - -+ a(m)* - - - a(m, n(m))
G = F(u(”m +1).

2.4. Among the elements of 5%, let .+~ < .5 be all those A =
lla(i, 7)|| such that this associated G = G(A) is as big as possible and
call this particular G = M. If 2 =+ @, also .+~ % @. Define @ =
max {a (m)*| Ae 5", m = m(A)}. Pick and element B = ||b(4, 7)|| € A4~
Then by our choice of M, (@) = M. Thus M = G(B) = ['(b(t)*) =
I'(b(i, 7)) = I'(u(t)) = I'(@) for ©1 = m(B) = m. Finally, with each element
B of _¢7 we associate an integer » = r(B). Since @ e I"(u(m)), there is a
unique smallest integer » = #(B) = 1 such that a" < w(m) < a—.

2.5. By omitting some of the rows of B and renumbering the
remaining ones, it may be assumed as a consequence of the a.c.c.
without loss of generality that m = 1, and also that o(1)* = s(2)* = ---
is not ascending. Each u(7) is of one of the following three forms:

(1) u(?) = ¢(1)b(1)* ,
(2) w(®) = bi)*w() ,
(3) w(@) = q(i)b(iy w() ,

where the ¢(7), w(i) are certain products of the b(s, 7). If there are
an infinite number of wu(?) of the forms (1) or (2), then since

w(@ + 1) = q(t + 1b(E + 1)* > u(i) = q(1)b(e)*, b + 1)* < b(3)*
= q(1 + 1) > q(1) ;

it follows (after omitting some rows and renumbering) that there is
a properly infinite ascending chain:

Case 1. q(l) < q@) < «-+;
Case 2. wl) < w(2) < +--.

If neither Case 1 nor Case 2 applies, then

w(@ + 1) = q(@ + 1)b(T + D*w(@ + 1) > ¢()b(7)*w(7)
and b(1 + 1)* < b(1)*

implies that one of the inequalities ¢(@ + 1) > q(7) or w(7 + 1) > w(1)
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must necessarily hold. It is asserted that there is a subsequence
{i(k)| k= 1,2, ---} such that

Case 3. either (a): q(i(1)) < q(3(2)) < +--
or (b): w((l)) < w(i(2)) < «+-.

For if not, then the a.c.c. must hold in both the sets {g(¢)} and
{w(?)}. Then by omitting some rows and renumbering the remaining
ones it may be assumed that we have an element B in _#" with
(1) = q2) = --- and w(l) = w(@) = ---. However, then

qdM)*w(l) = ¢(2)b2)* w(2) = ---

gives a contradiction.

2.6. We may assume gq(1) < q(2) < +++» or w(l) < w(2)--- are
properly ascending, depending on which of the Cases 1, 2, 3(a) or 3(b)
is applicable. Set ¢ = #(B), so that @' < u(m) = u(@) < u().

2.7. It is next shown that either ¢(7) = @ or w(¢) = @ holds
for all ¢. Suppose that the following holds.

Case 1. q(1)b(1)* < q(2)b(2)* < +++;
q(1) < q(2) Loeees
b)* = b2)* = ---

Then @' < u(1l) < u(@) = q(1)b(®)*, and @ = b(4)* implies that
a = q(1) = q@) .

(For if @' > q(7), then @ = b(¢)* implies that @ > q(?)b(s)*.) (If t =
1, then @ = e.) Similarly, in Case 2 also & < w(1) < w(7).
Only Case 3(b) will be proved, since 3(a) is entirely parallel.

Case 3(b). q1)bA)*w(l) < q(2)b(2)*w(2) < +++;
w(l) < w(2) < 03
b(1)* = b2 > ...

Then again @' < (1) < u(?) = q(®)b(3)*w(t) and @ = b(¢)* = q(1)b(7)*
imply that @t < w(l) < w(t). (Otherwise, if @' > w(:), then a® >
q(9)b(%)*w(7).)

The basic idea motivating the proof is that for Be._#; a new
C e+ can be constructed with »(C) < »(B) — 1.
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2.8. Thus either ¢(1) < ¢(2) < --- and all q(¢t) = a**; or w(l) <
w(2) < --- and all w() = a*~'. Assume the latter. Let

C = llet, 9l e

be defined by taking as its 4-th row all the b(¢, j) appearing in w(%).
(In view of w(l) < w(2) < -+, there does not exist an infinite number
of rows of C containing only one element. By omitting a finite number
of rows it may be assumed that all rows of C contain two or more
elements of L.) Define ¢(i)* = inf{c(¢, j) | = 1}. Since b(®)* < c(1)* < @,
it follows that

M= Ib@*Se@)* <@ =M.

Consequently, G(C) = M and Ce 7. Since w(l) = a**, r(C) =t — 1.
By repetition of this process, we may reduce the 7 to one so that
finally @ = @ < w@) < w(2) ---. Since all ¢(¢, j) € L satisfy ¢(1,7) < e
and since w(i) is a product of these, it follows that @ = ¢(9)* = w(s).
Thus @ = w(l) = w(2) = .- gives a contradiction. Thus 22" = @ and
the main theorem has been proved.
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